NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for First Three Years of Higher Education

PROPOSED STRUCTURE OF <u>UG - BOTANY</u> SYLLABUS

2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor , Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

Prepared by: Prof. Surendra Singh Bargali (Head) Prof. Yaswant Singh Rawat Prof. Lalit Mohan Tewari Dr. Lalit Mohan Tewari Dr. Kiran Bargali Dr. Sushma Tamta Dr. Neelu Lodhiyal Dr. Neelu Lodhiyal Dr. Anil Kumar Bisht Dr. Kapil Khulbe Dr. Harsh Kumar Chauhan Dr. Prabha Pant Dr. Naveen Chandra Pandey Department of Botany, D.S.B. Campus, Kumaun University, Nainital -263001

External Experts (NEP-2020 Workshop)

Prof. Gulshan Kumar Dhingra Head, Department of Botany Shri Dev Suman Uttarakhand University, Chamba, Tehri Garhwal-249145

> **Dr. Balwant Kumar** Head, Department of Botany Soban Singh Jeena University Almora-263601

	Semester-wise Titles of the Papers in B. Sc (Botany)						
Year	Semester	Course	Paper title	Theory/	Credits		
		Code		Practical			
		Cer	tificate Course in Basic Botany				
First	Ι	BOT101T	Microbes, Algae, Fungi and	Theory	4		
Year			Bryophytes				
		BOT102P	Practical/Lab course	Practical	2		
	II	BOT201T	Pteridophytes, Gymnosperms and	Theory	4		
			Angiosperms				
		BOT202P	Practical/Lab course	Practical	2		
		-	a Course in Developmental Botany				
Second	III	BOT301T	Morphology and Anatomy	Theory	4		
Year		BOT302P	Practical/Lab course	Practical	2		
	IV	BOT401T	Embryology and Cytogenetics	Theory	4		
		BOT402P	Practical/Lab course	Practical	2		
			Bachelor of Science				
Third V BO' Year		BOT501T	Molecular Biology and Plant	Theory	4		
			Biotechnology				
		BOT502T	Economic Botany and Plant	Theory	4		
			Breeding				
		BOT503 P	Practical/Lab course	Practical	2		
		BOT504R	Project I-Local Plant Diversity	Practical	4		
	VI	BOT 601T	Physiology and Biochemistry	Theory	4		
		BOT602T	Ecology and Biostatistics	Theory	4		
		BOT603P	Practical/Lab course	Practical	2		
			Project II-Local Ecosystem	Practical	4		
			studies				

	Year wise Structure of B.Sc. in Botany (Core/elective courses and Projects)										
Subject: Botany											
Course/ Entry-Exit level	Year	Semester	Paper-1	Credits/hrs	Paper-2	Credits/ hrs	Paper-3	Credits/hrs	Research project	Credits /hrs	Total Credits/hrs
Certificate Course in Basic Botany	Ι	Ι	Microbes, Algae, Fungi and Bryophytes	4/60	Practical/ Lab course	2/60	-	-	-	-	6/120
		П	Pteridophytes, Gymnosperms and Angiosperms	4/60	Practical/ Lab course	2/60	-	-	-	-	6/120
Diploma Course in	II	III	Morphology and Anatomy	4/60	Practical/ Lab course	2/60	-	-	-	-	6/120
Developmental Botany		IV	Embryology and Cytogenetics	4/60	Practical/ Lab course	2/60	-	-	-	-	6/120
Bachelor of Science	III	V	Molecular Biology and Plant Biotechnology	4/60	Economic Botany and Plant Breeding	4/60	Practical /Lab course	2/60	Project-I	4/60	14/240
		VI	Physiology and Biochemistry	4/60	Ecology and Biostatistics	4/60	Practical /Lab course	2/60	Project-II	4/60	14/240

COURSE INTRODUCTION

The new curriculum of B.Sc. in Science (Botany) offers essential knowledge and technical skills to study plants in a holistic manner. Students would be trained in all areas of plant biology using a unique combination of core, elective and vocational papers with significant inter-disciplinary components. Students would be exposed to cutting-edge technologies that are currently being used in the study of plant life forms, their evolution and interactions with other organisms within the ecosystem. Students would also become aware of the social and environmental significance of plants and their relevance to the national economy.

B.Sc. Botany Programme covers academic activities within the classroom sessions along with practical concepts at laboratory sessions. Infield, outstation activities and projects would also be organized for real-life experience and learning. Candidates who have curiosity in plants kingdom, ecosystem, love exploring exotic places and wish to work as researchers or professions like Botanist, Conservationist, Ecologist, etc. can choose B.Sc. Botany course.

Programme outcomes (POs):

Transformed curriculum shall develop educated outcome-oriented candidature, fostered with discovery- learning, equipped with practice & skills to deal practical problems and versed with recent pedagogical trends in education including e-learning, flipped class and hybrid learning to develop into responsible citizen for nation-building and transforming the country towards the future with their knowledge gained in the field of plant science.

DO1	CDCC
PO1	CBCS syllabus with a combination of general and specialized education shall
	introduce the concepts of breadth and depth in learning.
PO2	Shall produce competent plant biologists who can employ and implement their gained knowledge in basic and applied aspects that will profoundly influence the prevailing paradigm of agriculture, industry, healthcare and environment to provide sustainable development.
PO3	Will increase the ability of critical thinking, development of scientific attitude, handling of problems and generating solutions, improve practical skills, enhance communication skill, social interaction, and increase awareness in judicious use of plant resources by recognizing the ethical value system.
PO4	The training provided to the students will make them competent enough for doing jobs in Govt. and private sectors of academia, research and industry along with graduate preparation for national as well as international competitive examinations, especially UGC-CSIR NET, UPSC Civil Services Examination, IFS, NSC, FCI, BSI, FRI etc.

PO5	Certificate and diploma courses are framed to generate self- entrepreneurship and self- employability, if multi exit option is opted.
PO6	Lifelong learning is achieved by drawing attention to the vast world of knowledge of plants and their domestication.

Programme specific objectives (PSOs): B.Sc. I Year Certificate Course in Basic Botany

- This certificate course will provide knowledge on various fields of basic Botany.
- The syllabus is prepared to enable students for competitive exams in frontier areas of plant sciences.
- Students will be able to know about habit, habitat, morphology, anatomy and reproduction of various plant groups.

Programme specific outcomes (PSOs): B.Sc. II Year/ Diploma Course in Developmental Botany

- This programme will provide knowledge on plant anatomy, embryology and cytogenetics.
- Laboratory sessions following theory will provide easy understanding of internal structure of various plant parts, structural organization, reproductive biology and genetics.
- This course will help students to become a plant morphologist.

Programme specific outcomes (PSOs): B.Sc. III Year/ Bachelor of Science

- The three year learning outcome of graduation will provide understanding of plant systematic, developmental biology, ecology, statistics, physiology, biochemistry, anatomy, and plant genetics.
- It will provide expertise in conservation biology and reproduction biology.
- After completing this course successfully students will be able to contribute in the field of plant sciences. The research project will help to develop research aptitude for higher education and scientific research.

DETAILED SYLLABUS OF B.Sc. I YEAR FOR CERTIFICATE COURSE IN BASIC BOTANY

Course	Year	Semester
Certificate Course in Basic	B.Sc. I	Ι
Botany		

Paper 1: Microbes, Algae, Fungi and Bryophytes (Course code: BOT101T) Credit: 4

Course Outcome

After the completion of the course the students will be able to:

1. Develop understanding about the classification and diversity of different microbes including viruses, Algae, Fungi & Lichens & their economic importance.

2. Develop conceptual skill about identifying microbes, pathogens, biofertilizers & lichens.

3. Gain knowledge about developing commercial enterprise of microbial products.

4. Learn host -pathogen relationship and disease management.

5. Gain Knowledge about uses of microbes in various fields.

6. Understand the structure and reproduction of certain selected bacteria algae, fungi and lichens

7. Develop critical understanding on morphology, anatomy and reproduction of Bryophytes.

Unit	Торіс	No. of lectures/
		hrs
		(60)
1	Microbes :	15
	Viruses-discovery, general structure, replication (general account), DNA virus	
	(T-phage); Lytic and lysogenic cycle, RNA virus (TMV); economic	
	importance; bacteria-discovery, general characteristics and cell structure;	
	reproduction-vegetative, asexual and recombination (conjugation,	
	transformation and transduction); economic importance.	
2	Algae:	15
	General characteristics; Range of thallus organization and reproduction;	
	classification of algae; morphology and life-cycles of: Nostoc,	
	Chlamydomonas, Oedogonium, Vaucheria, Fucus, Sargassum; economic	
	importance of algae.	
3	Fungi :	15
	Introduction-general characteristics, ecology and significance, range of somatic	
	thallus organization, cell wall composition, nutrition, reproduction and	
	classification (G.C. Ainsworth); life cycle of Stemonitis (Myxomycota)	

	<i>Rhizopus</i> (Zygomycota) <i>Penicillium</i> (Ascomycota), <i>Puccinia, Agaricus</i> (Basidiomycota); <i>Alternaria</i> (Deutromycota), Symbiotic associations: Lichens-General account, reproduction and significance; Mycorrhiza: ectomycorrhiza, endomycorrhiza and their significance.	
4	Bryophytes:	15
	General characteristics, adaptations to land habit, classification (up to family), morphology, anatomy and reproduction of <i>Riccia</i> , <i>Marchantia</i> and <i>Funaria</i> ; ecology and economic importance of bryophytes.	

- Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi. 2nd edition.
- Tortora, G.J., Funke, B.R., Case, C.L. (2010). Microbiology: An Introduction, Pearson Benjamin Cummings, U.S.A. 10th edition.
- Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, MacMillan Publishers Pvt. Ltd., Delhi.
- Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley and Sons (Asia), Singapore. 4th edition.
- Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi, India.
- Pandey, S.N and Trivedi, P.S. (2015). A text book of Botany Vol.I Vikas publishing House Pvt/ Ltd, New Delhi.
- Vashishta, P.C., Sinha, A.K., Kumar, A. (2010). Bryophyta, S. Chand. Delhi, India.
- Parihar, N.S. (1991). An Introduction to Embryophyta Vol. I Bryophyta. Central Book Depot, Allahabad.

Credit: 2

Paper 2: Practical/ Lab course (Course code: BOT102P)

Course Outcome

After the completion of the course the students will be able:

1. Understand the instruments, techniques, lab etiquettes and good lab practices for working in a microbiology laboratory.

2. Develop skills for identifying microbes and using them for Industrial, Agriculture and Environment purposes.

3. Practical skills in the field and laboratory experiments in Microbiology and Pathology.

4. Learn to identify algae, lichens and plant pathogens along with their symbiotic and parasitic associations.

5. Students would learn to create their small digital reports where they can capture the zoomed in and zoomed out pictures as well as videos in case they are able to find some rare structure or phenomenon related to Bryophytes.

6. Understand morphology, anatomy, reproduction and developmental changes therein through typological study and create a knowledge base in understanding diversity, economic values & taxonomy of bryophytes.

Unit	Торіс	No. of Lectures/
		hrs (60)
1	EMs/Models of viruses – T-Phage and TMV, Line drawing/Photograph of Lytic and Lysogenic Cycle. Types of Bacteria from temporary/permanent slides/photographs; EM of	15
	bacterium; Binary Fission; Conjugation; Structure of root nodule; Gram staining technique	
2	Study of vegetative and reproductive structures of <i>Nostoc, Chlamydomonas</i> (electron micrographs), <i>Oedogonium, Vaucheria, Fucus</i> and <i>Sargassum</i> through temporary preparations and permanent slides/specimens	15
3	 <i>Rhizopus and Penicillium</i>: Asexual stages from temporary mounts. <i>Alternaria:</i> Specimens/photographs and tease mounts. <i>Puccinia</i>: Herbarium specimens of Black Rust of Wheat and infected Barberry leaves; section/tease mounts of spores on wheat and permanent slides of both the hosts. <i>Agaricus</i>: Specimens of button stage and full grown mushroom. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose). Mycorrhiza: ecto mycorrhiza and endo mycorrhiza (Photographs). 	15
4	 Marchantia and Riccia: Morphology of thallus, rhizoids and scales, V.S. thallus through gemma cup, gemmae whole mount (all temporary slides), V.S antheridiophore, archegoniophore, L.S. sporophyte (all permanent slides). Funaria- Morphology, whole mount leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, L.S capsule and protonema. 	15

- Pandey, B.P. (2014). Modern Practical Botany Vol. I. S. Chand and Company Ltd. Ramnagar, New Delhi.
- Purohit, S.D., Kundra, G. K. and Singhvi, A. (2013). Practical Botany (part I). Apex Publishing House Durga Nursery Road Udaipur, Rajasthan.
- Sambamurty, A.V.S.S. (2006). A text book of algae. I.K International Publishing House, Pvt. Ltd.

Course	Year	Semester
Certificate Course in Basic Botany	B.Sc. I	II

Paper 1: Pteridophytes, Gymnosperms and Angiosperms (BOT201T) Credit: 4

Course Outcome

After the completion of the course the students will be able to:

1. Develop critical understanding on morphology, anatomy and reproduction of Pteridophytes, Gymnosperms and Angiosperms.

2. Understanding of plant evolution and their transition to land habitat.

3. To learn the major patterns of diversity among plants, and the characters and types of data used to classify plants.

4. To compare the different approaches to classification with regard to the analysis of data.

5. To become familiar with major taxa and their identifying characteristics, and to develop in depth knowledge of the current taxonomy of a major plant family.

6. To discover and use diverse taxonomic resources, reference materials, herbarium collections, publications.

Unit	Торіс	No. of Lectures/
		hrs (60)
1	Pteridophytes	15
	General characteristics, classification, early land plants (<i>Rhynia</i>); classification	
	(up to family), morphology, anatomy and reproduction of Selaginella,	
	<i>Equisetum</i> and <i>Pteris</i> ; heterospory and seed habit, stelar evolution; ecological	
	and economic importance of Pteridophytes.	
2	Gymnosperms	15
	General characteristics, classification (up to family), morphology, anatomy	
	and reproduction of Cycas, Pinus and Ephedra; ecological and economic	
	importance.	
3	Introduction to plant taxonomy	10
	Identification, classification, nomenclature, functions of herbarium, important	
	herbaria and botanical gardens of the world and India	
	Important flora, botanical nomenclature (principles and rules (ICN); ranks and	
	names; binominal system, typification, author citation, valid publication,	
	rejection of names, principle of priority and its limitations).	
	Classification: Types of classification-artificial, natural and phylogenetic	
	Bentham and Hooker (upto series) and Hutchinson classification.	
4	Taxonomy of plant families	20

Ranunculaceae, Malvaceae, Rutaceae, Fabaceae, Apiaceae, Solanaceae,	
Lamiaceae, Euphorbiaceae, Asteraceae, Poaceae and Orchidaceae (Families	
can be chosen as per availability of local flora)	

- Vashishta, P.C., Sinha, A.K. and Kumar, A. (2010). Pteridophyta, S Chand and Company Ltd., Ramnagar, New Delhi, India.
- Vashishta, P.C., Sinha, A.K. and Kumar, A. (2010). Gymnosperms, S Chand and Company Ltd., Ramnagar, New Delhi, India.
- Bhatnagar, S.P. and Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- Parihar, N.S. (1991). An Introduction to Embryophyta. Vol. I. Bryophyta. Central Book Depot, Allahabad.
- Simpson, M.G. (2006). Plant Systematics. Elsevier Academic Press, San Diego, CA, U.S.A.
- Singh, G. (2012). Plant Systematics: Theory and Practice. Oxford and IBH Pvt. Ltd., New Delhi. 3rd edition.
- Gangulee H.C., Kar, A.K. and Santra S.C. (2011). College Botany Vol II. 4th Edition New Central Book Agency.
- Parihar, N.S. (1976). Biology and Morphology of Pteridophytes. Central Book Depot.
- Sharma, O.P. (1990). Textbook of Pteridophyta. MacMillan India Ltd. Delhi.
- Pandey, B.P. (2010). College Botany Vol II. S. Chand and Company Ltd., New Delhi, India.

Paper 2: Practical/ Lab course (BOT202P) Credit: 2

Course outcomes:

1. The students will be made aware of the group of plants that have given rise to land habit and the flowering plants. Through field study they will be able to see these plants growing in nature and become familiar with the biodiversity.

2. Develop an understanding by observation and table study of representative members of phylogenetically important groups to learn the process of evolution in a broad sense.

3. Understand morphology, reproduction and developmental changes therein through typological study and create a knowledge base in understanding the basis of plant diversity, economic values & taxonomy of plants.

Unit	Торіс	No. of
		Lectures/
		hrs (60)
1	Selaginella: Morphology, whole mount leaf with ligule, strobilus,	15
	microsporophyll and megasporophyll (temporary slides), T.S. stem, L.S.	
	strobilus (permanent slide).	
	Equisetum: Morphology, T.S. internode, L.S. strobilus, T.S and L.S.	

	 strobilus, whole mount sporangiophore, spores (wet and dry) (temporary slides); T.S. rhizome (permanent slide). <i>Pteris</i>: Morphology, T.S rachis, V.S. sporophyll, whole mount sporangium and spores (temporary slides), T.S. rhizome, whole mount prothallus with sex organs and young sporophyte (permanent slide). 	
2	 <i>Cycas</i>: Morphology (coralloid roots, bulbil, leaf), T.S. coralloid root and rachis, V.S. leaflet and microsporophyll, whole mount spores (temporary slides), L.S. ovule, T.S. root (permanent slide). <i>Pinus</i>: Morphology (long and dwarf shoots, male and female cones), T.S. needle and stem, L.S./T.S. male cone, whole mount microsporophyll and microspores (temporary slides), L.S. female cone, TLS and RLS stem (permanent slide). 	15
3	 Taxonomic Identification: Description of an angiospermic plant, study of vegetative and floral characters (description, V.S. flower, section of ovary, floral diagram/s, floral formula/e) and systematic position of the following families according to Bentham and Hooker's system of classification: Brassicaceae, Asteraceae, Solanaceae, Lamiaceae, and Liliaceae. (Plants can be chosen as per availability of local flora) 	20
4	Herbarium techniques : Plant collection, preservation and mounting of two properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book), digital/virtual herbarium.	10

- Pandey, B.P. (2014). Modern Practical Botany Vol. II. S. Chand and Company Ltd., New Delhi.
- Bendre, A.M. and Kumar A. (2003). Manual of Practical Botany Vol. II. Rastogi Publications, Meerut.
- Santra S.C. and Chatterjee (2005). College Botany Practical Vol. II New Central Book Agency Pvt. Ltd.

DETAILED SYLLABUS OF B.Sc. II YEAR OR DIPLOMA COURSE IN DEVELOPMENTAL BOTANY

Course	Year	Semester
Diploma Course in	B.Sc. II	III
Developmental Botany		

Paper 1: Morphology and Anatomy (Course code: BOT301T) Credit: 4

Course outcomes:

- 1. Understand morphology and anatomy.
- 2. Understand role of tissues in plant functions.
- 3. Understand the composition, modifications, internal structure & architecture of plants.

Unit	Торіс	No. of Lectures/ hrs (60)
1	Meristematic and permanent tissues: Types of tissues, Root and	15
	shoot apical meristems, Theories related to apical meristem, simple,	
	complex and secretary tissues	
2	Organs: Structure of dicot and monocot root, stem and leaf, root stem	
	transition	15
3	Adaptive and protective systems: Epidermis, cuticle and stomata	15
4	Secondary growth: Structure and function of Vascular cambium,	15
	secondary growth in stem and roots, abnormal secondary growth	

Suggested readings

- Mauseth, J.D. (1988). Plant Anatomy. The Benjamin/Cummings Publisher, USA.
- Pandey, B.P. (2001) Plant Anatomy. S. Chand and Company Ltd., New Delhi.
- Sharma, P.C. (2017). Text Book of Plant Anatomy. Arjun Publishing House.
- Menan, A.B. (2008). Introduction to Plant Anatomy. Neha Publishers and Distributors.
- Sharma, M.K. (2013) Plant Structures (An Introduction to Plant Anatomy). Vayu Education of India.

Paper 2: Practical/Lab Course (Course code: BOT302P)

Credits: 02

Course outcomes:

- 1. Understand cell structure in monocot and dicot plants.
- 2. Understand cell structure, secondary growth and adaptive anatomy in plants.

Unit	Торіс	No. of
		Lectures (60
		hrs)
1	Study of meristems through permanent slides and photographs.	15
	Tissues (parenchyma, collenchyma and sclerenchyma), complex and secretary tissues	
2	Anatomy of monocot and dicot Stem; monocot and dicot leaf; monocot and dicot root (Plants can be chosen as per availability of local flora)	15
3	Adaptive anatomy: Xerophytes, Hydrophytes, Epiphytes (Plants can be chosen as per availability of local flora)	15
4	Normal and abnormal secondary growth in different plants (Plants can be chosen as per availability of local flora)	15

- Pandey, B.P. (2014). Modern Practical Botany Vol. II. S. Chand and Company Ltd. Ramnagar, New Delhi.
- Pandey, B.P. (2001). Plant Anatomy. S. Chand and Company Ltd., Ram Nagar, New Delhi.
- Sundara, R.S. (2002). Practical Manual Anatomy and Embryology. Anmol Publisher, New Delhi.

Course	Year	Semester
Diploma Course in	B.Sc. II	IV
Developmental Botany		

Paper 1: Embryology and Cytogenetics (course code: BOT401) Credit: 4

Course outcomes:

1. Understand reproduction and developmental changes in plants.

2. Understand the structure and chemical composition of chromatin and concept of cell division.

3. Interpret the Mendel's principles; acquire knowledge on cytoplasmic inheritance and sexlinked inheritance.

Unit	Торіс	No. of Lectures (60 hrs)
1	Pollination and fertilization: Pollination mechanisms and adaptation,	15
	structure of anther and pollen, development of male and female	
	gametophytes, double fertilization.	
2	Embryo and endosperm: Types of ovules and embryo sacs; embryo	15
	and endosperm; types of endosperm; dicot and monocot embryo;	
	apomixis and polyembryony.	
3	Heredity: (Pre-mandelian genetics, brief life history of Mendel, laws of	15
	Inheritance, modified mandelian ratios, lethal genes, co-dominance,	
	incomplete dominance, chi square, pedigree analysis, multiple allelism,	
	chromosome theory of inheritance, sex-determination and sex-linked	
	inheritance, cytoplasmic inheritance	
	Linkage and crossing over: Linkage: concept and history, complete	
	and incomplete linkage, bridges experiment, coupling and repulsion,	
	recombination frequency, linkage maps based on two and three factor	
	crosses.	
4	Crossing over: Concept and significance, cytological proof of crossing	15
	over; mutations and chromosomal aberrations (types of mutations,	
	effects of physical and chemical mutagens, numerical chromosomal	
	changes: euploidy, polyploidy and aneuploidy; structural chromosomal	
	changes: deletions, duplications, inversions and translocations).	

- Bhojwani, S.S. and Bhatnagar, S.P. (2010). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd. New Delhi. 5th edition.
- Johri, B.M. (1984). Embryology of Angiosperms. Springer-Verlag, Berlin
- Maheshwari, P. (1971). An Introduction to Embryology of Angiosperms. McGraw Hill Book Co. London.
- Rastogi, V.B. (2019). Genetics. 4th Edition. MEDTECH: A Division of Scientific International.

Paper 2: Practical/Lab Course (Course code: BOT402) Credits: 4

Course outcomes

1. Understand the pollination and seed dispersal mechanism.

2. Study the structure of ovules and female gametophytes.

3. Interpret the Mendel's principles; and understand the monohybrid and dihybrid crosses and their ratio and chromosomal changes.

Unit	Торіс	No. of Lectures (60 hrs)
1	Pollination types and seed dispersal mechanisms (photographs and specimens)	15
2	Structure of anther (young and mature). Types of ovules: anatropous, orthotropous, circinotropous, amphitropous, campylotropous. Female gametophyte: <i>Polygonum</i> (monosporic) type of embryo sac development (permanent slides/photographs) Ultrastructure of mature egg apparatus cells through electron micrographs (permanent slides/photographs)	15
3	 Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square. Monohybrid cross (dominance and incomplete dominance) Dihybrid cross and gene interactions Pedigree analysis for dominant and recessive autosomal and sex linked traits. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1, 13:3, 15:1, 12:3:1, 9:3:4). 	15
4	Study of aneuploidy: Down's, Klinefelter's and Turner's syndromes through photographs. Photographs/permanent slides showing translocation ring, laggards and inversion bridge	15

- Sundara, R.S. (2002). Practical Manual Anatomy and Embryology. Anmol Publisher, New Delhi.
- Singh, R.J. (2021). Practical Manual on Plant Cytogenetics. CRC Press, Taylor and Francis Group, Routledge.

DETAILED SYLLABUS OF B. Sc III YEAR OR BACHELOR OF SCIENCE

Course	Year	Semester
Bachelor of Science	B.Sc. III	V

Paper 1: Cell and Molecular Biology, and Biotechnology (Course code: BOT501T)Credit: 4

Course outcomes:

1. Understand cell structure, nucleic acids, organization of DNA in prokaryotes and Eukaryotes, DNA replication mechanism, genetic code and transcription process.

2. Know about processing and modification of RNA and translation process, function and regulation of expression.

3. Understand the basic tools and techniques used in Plant tissue culture.

Unit	Торіс	No. of
		Lectures (60
		hrs)
1	Cell Biology: The cell theories, prokaryotic and eukaryotic cells, cell organelles (Mitochondria, Chloroplast, ER, golgi body, lysosomes, peroxisomes, glyoxisomes, nucleus, chromatin; DNA packaging in eukaryotes, euchromatin and heterochromatin, nucleolus and ribosome structure), cell membrane and cell wall; models of membrane structure, cell cycle (overview of cell cycle, mitosis and meiosis, molecular controls).	18
2	Molecular Biology: Genetic material (DNA: Miescher to Watson and Crick- historic perspective, Griffith's and Avery's transformation experiments, Hershey-Chase bacteriophage experiment, DNA structure, types of DNA, types of genetic material); DNA replication (Prokaryotes); Transcription (Prokaryotes) Types of structures of RNA (mRNA, tRNA, rRNA); Translation (Prokaryotes), Regulation of gene expression (Prokaryotes: Lac operon and Tryptophan operon).	18
3	Plant tissue culture: Culture types on the basis of explants and media composition, General lab setup and instrumentation, micropropagation, brief account of protoplast culture, somatic embryogenesis with their applications.	12
4	Recombinant DNA techniques: Blotting techniques: Northern, Southern and Western Blotting, Molecular DNA markers i.e. RAPD, RFLP, SNPs, PCR, hybridoma and monoclonal antibodies, ELISA and Immunodetection.	12

- Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley and Sons. Inc.
- De Robertis, E.D.P. and De Robertis, E.M.F. (2006). Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.
- Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach. 5th edition. ASM Press and Sunderland, Washington, D.C.; Sinauer Associates, MA.

• Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G.P. (2009). The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.

Paper 2: Economic Botany and Plant Breeding (Course code: BOT502T) Credit:4

Course outcomes

1. Know about the importance of medicinal plants and its useful parts, economically important plants in our daily life and also about the traditional medicines and herbs, and its relevance in modern times.

2. Understand the plant breeding systems and heterosis and mutation in plant breeding.

Unit	Торіс	No. of Lectures (60 hrs)
1	Origin of cultivated plants (concept of centres of origin, their importance with reference to vavilov's work)	18
2	 A brief knowledge of botany and commercial utilization and uses of the following plants: 1. Cereals and millets- Wheat, Rice and Maize, Ragi, Pearl millet 2. Sugar yielding plants- Sugarcane and Sugar beet 3. Fruits- Mango, Apple, Banana, Citrus and Litchi. 4. Fibers- Cotton, Jute, Hemp, Coir, Agave and Semal. 5. Vegetables- Root vegetables, stem vegetables and fruit vegetables. 6. Timbers- Teak, Shisham, Sal, Chir and Deodar. 7. Medicinal plants- <i>Aconitum, Atropa, Cinchona, Rauwolfia, Ephedra, Withania</i>, and <i>Alovera</i>. 8. Oils, Beverages, Fumitories, masticatories, Spices and Condiments yielding plants. 	12
3	Plant breeding (introduction and objectives; breeding systems, important achievements and undesirable consequences of plant breeding); methods of crop improvement; centres of origin and domestication of crop plants, plant genetic resources; acclimatization; selection methods.	18
4	Hybridization: for self, cross and vegetatively propagated plants – procedure, advantages and limitations; inbreeding depression and heterosis (history, genetic basis of inbreeding depression and heterosis; applications); crop improvement and breeding (role of mutations; polyploidy; distant hybridization and role of biotechnology in crop improvement).	12

- Kochhar, S.L. (2011). Economic Botany in the Tropics, MacMillan Publishers India Ltd., New Delhi. 4th edition.
- Pandey, B.P. (1999). Economic Botany. S. Chand, New Delhi.

- Singh, B.D. (2005). Plant Breeding: Principles and Methods. Kalyani Publishers. 7th edition.
- Acquaah, G. (2007). Principles of Plant Genetics and Breeding. Blackwell Publishing.

Paper 3: Lab Course (Course code: BOT503P) Credit: 2

Course outcomes

- 1. Learn the basic structure and function of cells and instruments used in molecular biology,
- 2. Know about the commercial products produced from plants.
- 3. Understand about the ethnobotanical details of plants.
- 4. Learn about the chemistry of plants and herbal preparations.

Unit	Торіс	No. of Lectures (60 hrs)
1	Structure of prokaryotic cells (bacteria), viruses, eukaryotic cells with the help of light and electron micrographs. Study of the photomicrographs of cell organelles, structure of plant cell through temporary mounts. Study of mitosis and meiosis (temporary mounts and permanent slides). Demonstration of the effect of temperature, organic solvent on semi permeable membrane.	15
2	Study of plasmolysis, deplasmolysis, Endo- and Exo-osmosis. Instruments and equipments used in molecular biology The cell size measurements (either length or breadth/diameter) by micrometry. Study the structure of nuclear pore complex by photograph (from Gerald Karp) Study of special chromosomes (polytene and lampbrush) either by slides or photographs. Study DNA packaging by micrographs. Preparation of the karyotype and ideogram from given photograph of somatic metaphase chromosome.	15
3	Study of economically important plants: Cereals: Wheat, Rice, Maize Millets: Fingermillet, Foxtail, Ragi Pulses: Gram, Green gram, Pea, Pigeon pea, Soyabean, Chick pea Timbers: Shisam, Sal, Teak, Deodar, Pine Medicinal plants: Dhatura, Berginia, Hedychium, Poppy, Basil, Barberry Beverages: Tea, Coffee Oils: Mustard, Seseame, Coconut, Linseed, Groundnut, Castor, Laung, Sandal wood, Mentha Spices: Coriander, Cardmum, Curcuma, Cinamom, Laung, Cumin, Thyme, Nigella, Cinamom leaf	15

Γ		Fibers: Jute, Coconut, Hemp, Urtica, Cotton	
		Sugars and starch yielding plants: Sugarcane, Potato, Beet root	
		Fruits and vegetables cultivated in the area.	
		Gums and Resins.	
	4	Hybridization techniques - Emasculation, Bagging (For demonstration only).	15
		Induction of polyploidy in plants (For demonstration only).	

- Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- Pandey, B.P. (1999). Economic Botany. S. Chand, New Delhi.

Paper 4: Project in Botany for Pre-graduation (Course code: BOT504R) Credit: 4

(Based on Local Plant Diversity)

Course	Year	Semester
Bachelor of Science	B.Sc. III	VI

Paper 1: Plant Physiology and Biochemistry (BOT601T)

Credit: 4

Course outcome

1. Understand the role of physiological and metabolic processes for plant growth and development.

2. Learn the symptoms of mineral deficiency in crops and their management.

3. Assimilate knowledge about Biochemical constitution of plant diversity.

4. Know the role of plants in development of natural products, nutraceuticals, dietary supplements, antioxidants.

Unit	Торіс	No. of
		Lectures (60 hrs)
1	 Plant-water relations: Importance of water, water potential and its components; transpiration and its significance; factors affecting transpiration; root pressure and guttation. Mineral nutrition: Essential elements, macro and micronutrients; criteria of essentiality of elements; role of essential elements; transport of ions across cell membrane, active and passive transport, carriers, channels and pumps 	18
2	Photosynthesis: (photosynthetic Pigments (Chl a, b, xanthophylls,	18

	 carotene); photosystem I and II, electron transport and mechanism of ATP synthesis; C₃, C₄ and CAM pathways of carbon fixation; photorespiration). Respiration (glycolysis, anaerobic respiration, TCA cycle; oxidative phosphorylation, glyoxylate cycle). 	
3	Nitrogen metabolism: Biological nitrogen fixation; nitrate and ammonia assimilation. Plant growth regulators: Discovery and physiological roles of auxins, gibberellins, cytokinins, ABA, ethylene.	12
4	Biochemistry: General introduction to carbohydrates, lipids and proteins. Enzymes (structure and properties; mechanism of enzyme catalysis and enzyme inhibition, factors affecting enzyme action).	12

- Taiz, L., Zeiger, E., (2010). Plant Physiology. Sinauer Associates Inc., U.S.A. 5th Edition.
- Hopkins, W.G., Huner, N.P., (2009). Introduction to Plant Physiology. John Wiley and Sons, U.S.A. 4th Edition.
- Bajracharya, D., (1999). Experiments in Plant Physiology- A Laboratory Manual. Narosa Publishing House, New Delhi.

Paper 2: Ecology and Biostatistics (Course code: BOT602T) Credit: 4

Course outcome

1. Acquaint the students with complex interrelationship between organisms and environment;

2. Make them understand methods for studying vegetation, community patterns and processes,

ecosystem functions, and principles of phytogeography.

3. Understanding the strategies for sustainable natural resource management and biodiversity conservation.

4. Practical knowledge of the different statistics tools and techniques.

Unit	Торіс	No. of Lectures (60 hrs)
1	Ecological factors:	12
	Soil (Origin, formation, composition, soil profile)	
	Plant adaptation in relation to water (Hydrophytes and xerophytes),	
	light (Sciophytes and heliophytes) and temperature	
	Pollution: Water, Soil and Radioactive.	

2	 Ecosystem: Types, structure, energy flow, trophic organization, food chains and food webs, ecological pyramids. Biogeochemical cycles: Cycling of carbon, nitrogen and phosphorous. Population: Characteristics, Growth curves, Ecotypes and Ecads Plant communities: Characteristics, plant succession, Biological spectrum 	18
	Biodiversity conservation	
3	Biostatistics: Definition and scope of statistics, sampling techniques, representation of data: tabular, graphical etc	18
	Measures of central tendency: Arithmetic mean, mode, median.	
4	Measures of dispersion: range, mean deviation, variation, standard	12
	deviation;	
	Chi-square test for goodness of fit	
	Regression analysis	

- Sharma, P.D. (2010) Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- Shukla, R.S. and Chandel P.S. (2005). A text book of Plant Ecology. S. Chand and Company Ltd., Ram Nagar, New Delhi.
- Rastogi, V.B. (2015). Biostatistics. Medtech, 3rd Edition.
- Banerjee, P.K. (2006). Introduction to Biostatistics. S. Chand and Company Ltd., Ram Nagar, New Delhi.
- Singh, J.S. Singh S.P. and Gupta, S.R. (2014). Ecology, Environment and Resource Conservation. S. Chand and Compony Pvt. Ltd., New Delhi.

Paper 3: Practical/lab Course (Course code: BOT603P)

Credit: 2

Course outcome

1. Understand the role of different physiological and metabolic processes of plants.

- 2. Gaining practical knowledge implemented in the biodiversity assessment and conservation.
- 3. Practical knowledge of the different statistics tools and techniques.

Unit	Торіс	No. of
		Lectures (60 hrs)
1	Demonstration of process of diffusion, osmosis and plasmolysis	18
	Demonstration of transpiration in dorsivental leaf by four leaf and cobalt	
	chloride method.	
	Determination of rate of transpiration by Ganong's/Farm potometer.	

	Demonstration of the effect of light intensity and bicarbonate concentration on O_2 evolution in photosynthesis by Wilmott's bublar Determination of R.Q of different respiratory substrates by Ganong's respirometer Demonstration of anaerobic respiration in germinating seeds.	
2	Test of carbohydrates, proteins and fats.	12
3	Observation and study of different ecosystems mentioned in the syllabus. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, rain gauge and lux meter. Determination of pH, and analysis of soil samples for soil moisture, organic carbon, nitrogen and phosphorus. Comparison of bulk density, porosity and rate of infiltration of water in soil of three habitats. Study of ecological adaptations in hydrophytes and xerophytes. Study of biotic interactions of: stem parasite (<i>Cuscuta</i>), root parasite (orobanche), epiphytes, predation (insectivorous plants) through specimen or diagrams. Determination of minimum quadrat size for the study of herbaceous vegetation by species area curve method (species to be listed). Quantitative analysis of herbaceous vegetation in the college campus for frequency, density, abundance and A/F ratio. Population structure study of dominant tree species of the locality.	18
4	Analysis of statistical data: mean, median and mode by analyzing the given data of individual, discrete and continuous series, standard error and deviation Numerical based on correlation coefficient Numerical based on chi square value Representation of data by making graphs and diagrams etc. Comment upon given graphs, diagrams etc.	12

- Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.
- Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication. U.S.A. 4th edition.

Paper 4: Project in Botany for Pre-graduation (Course code: BOT604R) Credits: 04

(Based on Local Ecosystem studies)

Vocational/Skill Enhancement Courses in Botany

(i) Bio-fertilizers

Credit: 3

Course outcome

- 1. Develop conceptual skill about identifying microbes, and bio-fertilizers.
- 2. Gain knowledge about developing commercial enterprise of bio-fertilizers.

Unit	Торіс	No. of lecturers/ hrs (45)
1	General account about the microbes used as biofertilizer – <i>Rhizobium</i> – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.	10
2	<i>Azospirillum:</i> isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. <i>Azotobacter</i> : classification, characteristics – crop response to <i>Azotobacter</i> inoculum, maintenance and mass multiplication Cyanobacteria (blue green algae), <i>Azolla</i> and <i>Anabaena azollae</i> association, nitrogen fixation, factors affecting growth, blue green algae and <i>Azolla</i> in rice cultivation	15
3	Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants	10
4	Organic farming – Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods, types and method of vermicomposting – field Application. National and state institutes related to the activity.	10

- Dubey, R.C. (2005). A Text Book of Biotechnology. S.Chand and Co, New Delhi.
- Kumaresan, V. (2005). Biotechnology, Saras Publications, New Delhi.

- John Jothi Prakash, E. (2004). Outlines of Plant Biotechnology. Emkay Publication, New Delhi.
- Sathe, T.V. (2004). Vermiculture and Organic Farming. Daya Publishers.
- Subha Rao, N.S. (2000). Soil Microbiology, Oxford and IBH Publishers, New Delhi.
- Vayas, S.C, Vayas, S. and Modi, H.A. (1998). Bio-fertilizers and organic Farming. Akta Prakashan, Nadiad.

(ii) Herbal Technology

Credit: 3

Course outcome

1. Develop conceptual skill about traditional Indian medicinal system, herbal medicines, their processing, storage and marketing.

2. Gain knowledge about developing commercial enterprise of herbal medicines.

3. Learn the basic tools and techniques for phytochemical analysis and propagation of the medicinal plants.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Herbal medicines: history and scope - definition of medical terms - role of medicinal plants in Siddha systems of medicine; cultivation - harvesting - processing - storage - marketing and utilization of medicinal plants.	10
2	 Pharmacognosy - systematic position medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka. Phytochemistry - active principles and methods of their testing - identification and utilization of the medicinal herbs; <i>Catharanthus roseus</i> (cardiotonic), <i>Withania somnifera</i> (drugs acting on nervous system), <i>Clerodendron phlomoides</i> (anti-rheumatic) and <i>Centella asiatica</i> (memory booster). 	15
3	Analytical pharmacognosy: Drug adulteration - types, methods of drug evaluation - Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds).	10
4	Medicinal plant banks micro propagation of important species (<i>Withania somnifera</i> , neem and tulsi- Herbal foods-future of pharmacognosy). National and state institutes related to the activity.	10

- Chopra, R.N., Nayar S.L. and Chopra, I.C. (1956). Glossary of Indian Medicinal Plants, C.S.I.R, New Delhi.
- Arber, A. (1999). Herbal plants and Drugs. Mangal Deep Publications.
- Sivarajan V.V. and Balachandran I. (1994). Ayurvedic drugs and their plant source. Oxford IBH publishing Co.
- Miller, L. and Miller, B. (1998). Ayurveda and Aromatherapy. Banarsidass, Delhi.
- Green, A. (2000). Principles of Ayurveda, Thomsons, London.
- Kokate, C.K. (1999). Pharmacognosy, Nirali Prakashan.

(iii) Nursery and Gardening

Credit: 3

- 1. Develop conceptual of nursery and gardening.
- 2. Gain knowledge about developing commercial enterprise of nursery.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Nursery: definition, objectives and scope and building up of infrastructure for nursery, planning and seasonal activities - Planting - direct seeding and transplants. Seed: Structure and types - Seed dormancy; causes and methods of breaking dormancy-Seed storage: Seed banks, factors affecting seed viability, genetic erosion – Seed production technology - seed testing and certification	15
2	Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings - Hardening of plants – green house - mist chamber, shed root, shade house and glass house	10
3	Gardening: definition, objectives and scope - different types of gardening-landscape and home gardening - parks and its components - plant materials and design-computer applications in landscaping - Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting.	10
4	Sowing/raising of seeds and seedlings - Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, lady's finger, onion, garlic, tomatoes, and carrots - Storage and marketing procedures. National and state institutes related to the activity.	10

Suggested readings

• Bose T.K. and Mukherjee, D. (1972). Gardening in India, Oxford and IBH Publishing Co., New Delhi.

- Sandhu, M.K. (1989). Plant Propagation, Wile Eastern Ltd., Bangalore, Madras.
- Kumar, N. (1997). Introduction to Horticulture, Rajalakshmi Publications, Nagercoil.
- Agrawal, P.K. (1993). Hand Book of Seed Technology, Dept. of Agriculture and Cooperation, National Seed Corporation Ltd., New Delhi.
- Jules J. (1979). Horticultural Science. (3rd Ed.), W.H. Freeman and Co., San Francisco, USA.

(iv) Floriculture

Credit: 3

Course outcome

- 1. Develop conceptual skill about floriculture.
- 2. Gain knowledge about developing commercial enterprise of commercial floriculture.

Unit	Торіс	No. of lecturers/
		hrs
		(45)
1	Introduction: History of gardening; Importance and scope of	15
	floriculture.	
	Nursery Management and Routine Garden Operations: Sexual and	
	vegetative methods of propagation; Soil sterilization; Seed sowing;	
	Pricking; Planting and transplanting; Role of plant growth regulators.	
2	Ornamental Plants: Flowering annuals; Herbaceous perennials; Shade	10
	and ornamental trees; Cacti and succulents; Palms and Cycads; Ferns;	
	Cultivation of plants in pots; Indoor gardening; Bonsai.	
3	Principles of Garden Designs: English, Italian, French, Persian,	10
	Mughal and Japanese gardens; Features of a garden (Garden wall,	
	Fencing, Steps, Hedge, Edging, Lawn, Flower beds, Shrubbery,	
	Borders, Water garden. Some Famous gardens of India.	
4	Commercial Floriculture: Factors affecting flower production;	10
	Production and packaging of cut flowers; Flower arrangements;	
	Methods to prolong vase life; Cultivation of Important cut flowers	
	(Carnation, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolous,	
	Marigold, Rose, Lilium, Orchids). Diseases and Pests of Ornamental	
	Plants.	
	National and state institutes related to the activity.	
	Suggested readings	

Suggested readings

• Randhawa, G.S. and Mukhopadhyay, A. (1986). Floriculture in India. Allied Publishers.

(v) Medicinal Botany

1. Understand the traditional Indian medicinal systems and their importance.

2. To learn the strategies for the conservation of medicinal plants.

3. Gain knowledge about developing commercial enterprise of herbal medicines.

Unit	Торіс	No. of
		lecturers/
		hrs (45)
1	History, Scope and Importance of Medicinal Plants. Indigenous	10
	Medicinal Sciences; Definition and Scope-Ayurveda: History,	
	origin, panchamahabhutas, saptadhatu and tridosha concepts,	
	Rasayana, plants used in ayurvedic treatments, Siddha:	
2	Origin of Siddha medicinal systems, Basis of Siddha system,	10
	plants used in Siddha medicine. Unani: History, concept: Umoor-	
	e- tabiya, tumors treatments/ therapy, polyherbal formulations.	
3	Conservation of endangered and endemic medicinal plants.	15
	Definition: endemic and endangered medicinal plants, Red list	
	criteria; In situ conservation: Biosphere reserves, sacred groves,	
	National Parks; Ex situ conservation: Botanical Gardens,	
	Ethnomedicinal plant Gardens. Propagation of Medicinal Plants:	
	Objectives of the nursery, its classification, important	
	components of a nursery, sowing, pricking, use of green house	
	for nursery production, propagation through cuttings, layering,	
	grafting and budding	
4	Ethnobotany and Folk medicines. Definition; Ethnobotany in	10
	India: Methods to study ethnobotany; Applications of	
	Ethnobotany: National interacts, Palaeo-ethnobotany. folk	
	medicines of ethnobotany, ethnomedicine, ethnoecology, ethnic	
	communities of India. Application of natural products to certain	
	diseases- Jaundice, cardiac, infertility, diabetics, Blood pressure	
	and skin diseases.	
	National and state institutes related to the activity.	
	Suggested readings	

- Trivedi, P.C. (2006). Medicinal Plants: Ethnobotanical Approach, Agrobios, India.
- Purohit, S.S. and Vyas, S.P. (2008). Medicinal Plant Cultivation: A Scientific Approach, 2nd edn. Agrobios, India.

(vi) Conservation and Management of biodiversity

Course outcome

- 1. Understand the importance, benefits and services of biodiversity.
- 2. To learn the strategies for the conservation of biodiversity.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Plant diversity and its scope- Genetic diversity, Species diversity, Plant	10
	diversity at the ecosystem level, Agrobiodiversity and cultivated plant	
	taxa, wild taxa. Values and uses of Biodiversity: Ethical and aesthetic	
	values, Precautionary principle, Methodologies for valuation, Uses of	
	plants, Uses of microbes	
2	Loss of Biodiversity; Loss of genetic diversity, Loss of species	15
	diversity, Loss of ecosystem diversity, Loss of agrobiodiversity,	
	Projected scenario for biodiversity loss,	
	Management of Plant Biodiversity: Organizations associated with	
	biodiversity management-Methodology for execution-IUCN, UNEP,	
	UNESCO, WWF, NBPGR; Biodiversity legislation and conservations,	
	Biodiversity information management and communication.	
3	Conservation of Biodiversity: Conservation of genetic diversity,	10
	species diversity and ecosystem diversity, In situ and ex situ	
	conservation, Social approaches to conservation, Biodiversity	
	awareness programmes, Sustainable development	
4	Role of plants in relation to Human Welfare; a) Importance of	10
	forestry their utilization and commercial aspects b) Avenue trees, c)	
	Ornamental plants of India. d) Alcoholic beverages through ages.	
	Fruits and nuts: Important fruit crops their commercial importance.	
	Wood and its uses.	
	National and state institutes related to the activity.	

Suggested readings

• Krishnamurthy, K.V. (2004). An Advanced Text Book of Biodiversity – Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi

(vii) Ethnobotany

Course outcomes

1. To learn the proper documentation and presentation of traditional knowledge about plants.

2. To use important plants by the tribal communities for various purposes.

3. To learn the conservation of wild growing plants and their socioeconomic impacts.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Ethnobotany: Introduction, concept, scope and objectives;	10
	Ethnobotany as an interdisciplinary science. The relevance of	
	ethnobotany in the present context; Major and minor ethnic	
	groups or Tribals of India, and their life styles. Plants used by the	
	tribals: a) Food plants b) intoxicants and beverages c) Resins and	
	oils and miscellaneous uses	
2	Methodology of Ethnobotanical studies	10
	a) Field work b) Herbarium c) Ancient Literature d) Temples and	
	sacred places e) Indigenous knowledge system	
3	Role of ethnobotany in modern Medicine	15
	Medico-ethnobotanical sources in India; Significance of the	
	following plants in ethno botanical practices (along with their	
	habitat and morphology) a) Azadiractha indica b) Ocimum	
	sanctum c) Vitex negundo. d) Gloriosa superba e) Tribulus	
	terrestris f) Pongamia pinnata g) Cassia auriculata h) Indigofera	
	tinctoria. Role of ethnobotany in modern medicine with special	
	example Rauvolfia sepentina, Trichopus zeylanicus, Artemisia,	
	Withania.	
	Role of ethnic groups in conservation of plant genetic resources.	
	Endangered taxa and forest management (participatory forest	
	management).	
4	Ethnobotany and legal aspects	10
	Ethnobotany as a tool to protect interests of ethnic groups.	
	Sharing of wealth concept with few examples from India.	
	Biopiracy, Intellectual Property Rights and Traditional	
	Knowledge.	
	National and state institutes related to the activity.	

- Jain S.K. (1995). Manual of Ethnobotany, Scientific Publishers, Jodhpur, 1995.
- Jain S.K. (1981). Glimpses of Indian. Ethnobotany, Oxford and I B H, New Delhi.
- Jain S.K. (1989). Methods and approaches in ethnobotany. Society of Ethnobotanists, Lucknow, India.
- Jain S.K. (1990). Contributions of Indian ethnobotany. Scientific publishers, Jodhpur.
- Colton C.M. (1997). Ethnobotany-Principles and applications. John Wiley and sons Chichester.
- Rama Ro, N and A.N. Henry (1996). The Ethnobotany of Eastern Ghats in Andhra Pradesh, India. Botanical Survey of India. Howrah.
- Rajiv K. Sinha (1996). Ethnobotany The Renaissance of Traditional Herbal Medicine INA –SHREE Publishers, Jaipur).

(viii) Mushroom Cultivation

Credit: 3

Course outcome

1. Understand the economic importance of mushroom cultivation.

2. To learn the basic tools and techniques used in mushroom cultivation.

3. To learn the skills for developing commercial enterprise of mushroom cultivation.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Introduction, history. Nutritional and medicinal value of edible mushrooms; Poisonous mushrooms. Types of edible mushrooms available in India- Volvariella volvacea, Pleurotus citrinopileatus, Agaricus bisporus.	10
2	Cultivation methods: Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit (Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication. Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation - Low cost technology, Composting technology in mushroom production	15
3	Storage and nutrition: Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in salt solutions. Nutrition- Proteins - amino acids, mineral elements nutrition - Carbohydrates, Crude fibre content - Vitamins.	10
4	Food preparation: Delicacies of mushroom and its value addition, Research Centres - National level and Regional level. Cost benefit	10

ratio - Marketing in India and abroad, Export Value.	
National and state institutes related to the activity.	

- Marimuthu, T. Krishnamoorthy, A.S. Sivaprakasam, K. and Jayarajan. R. (1991). Oyster Mushrooms, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore.
- Swaminathan, M. (1990). Food and Nutrition. Bappeo, The Bangalore Printing and Publishing Co. Ltd., No. 88, Mysore Road, Bangalore 560018.
- Tewari, P. and Kapoor, S.C. (1988). Mushroom cultivation, Mittal Publications, Delhi.
- Bahl, N. (2000). Hand book of Mushrooms. Oxford & Ibh Publishing Co. Pvt Ltd

(ix) Intellectual Property Rights

Credit: 3

1. Understand the basic concepts of intellectual property rights.

2. To learn the procedure for obtaining the intellectual property rights.

Unit	Торіс	No. of lecturers/ hrs (45)
1	Introduction to intellectual property right (IPR)	10
	Concept and kinds. Economic importance. IPR in India and world:	
	Genesis and scope, some important examples. IPR, WTO TRIPS and WIPO.	
2	Patents	10
	Objectives, Rights, Patent Act 1970 and its amendments.	
	Procedure of obtaining patents,	
	Working of patents, Infringement.	
	Copyrights	
	Introduction, Works protected under copyright law, Rights,	
	Transfer of Copyright, Infringement.	
	Trademarks	
	Objectives, Types, Rights, Protection of goodwill, Infringement,	
	Passing off, Defenses, Domain name.	
	Geographical Indications	
	Objectives, Justification, International Position, Multilateral	
	Treaties, National Level, Indian Position.	
3	Protection of Traditional Knowledge	10
	Objective, Concept of Traditional Knowledge, Holders, Issues	
	concerning, Bio-Prospecting and Bio-Piracy, Alternative ways,	
	Protectability, need for a Sui-Generis regime, Traditional	
	Knowledge on the International Arena, at WTO, at National level,	

	Traditional Knowledge Digital Library.	
	Industrial Designs	
	Objectives, Rights, Assignments, Infringements, Defences of	
	Design Infringement	
4	Protection of Plant Varieties	15
	Plant Varieties Protection-Objectives, Justification, International	
	Position, Plant varieties protection in India. Rights of farmers,	
	Breeders and Researchers. National gene bank, Benefit sharing.	
	Protection of Plant Varieties and Farmers' Rights Act, 2001.	
	Information Technology Related Intellectual Property Rights	
	Computer Software and Intellectual Property, Database and Data	
	Protection, Protection of Semi-conductor chips, Domain Name	
	Protection.	
	Biotechnology and Intellectual Property Rights.	
	Patenting Biotech Inventions: Objective, Applications, Concept of	
	Novelty, Concept of inventive step, Microorganisms, Moral Issues	
	in Patenting Biotechnological inventions.	

- N.K. Acharya (2001). Textbook on intellectual property rights, Asia Law House.
- Manjula Guru and M.B. Rao (2003). Understanding Trips: Managing Knowledge in Developing Countries, Sage Publications.
- P. Ganguli (2001). Intellectual Property Rights: Unleashing the Knowledge Economy, Tata McGraw-Hill.
- Miller, A.R. and Davis M.H. (2000). Intellectual Property: Patents, Trademarks and Copyright in Nutshell, West Group Publishers.
- Watal, J. (2003) Intellectual property rights in the WTO and developing countries, Oxford University Press, Oxford.

NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for First Three Years of Higher Education

> PROPOSED STRUCTURE OF <u>UG - CHEMISTRY</u> SYLLABUS

> > 2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor , Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

Name	Designation	Affiliation
Dr. A. B. Melkani	Professor & Head	D. S. B. Campus, Kumaun University, Nainital
Dr. Chitra Pande	Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Pushpa Joshi	Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. N. G. Sahoo	Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Geeta Tewari	Associate Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Shah Raj Ali	Associate Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Suhel Javed	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Mahesh. C. Arya	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Manoj Dhuni	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. Penny Joshi	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital
Dr. A. Dandapat	Inspire Faculty	D. S. B. Campus, Kumaun University, Nainital

SYLLABUS PREPARATION COMMITTEE

EXPERT COMMITTEE

Name	Designation	Affiliation
Dr. A. B. Melkani	Dean, Faculty of Science	Kumaun University, Nainital
Dr. G. C. Shah	Professor & Head	SSJ University, Almora
Dr. S. P. Sati	Professor	Sri Suman Dev University, Srinagar

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits
			tificate in Introductory Ch	emistry	1
1	Ι		Fundamentals of Chemistry-I	Theory	4
			Chemical Analysis-I	Practical-1	2
	II		Fundamentals of Chemistry-II	Theory	4
			Chemical Analysis-II	Practical-1	2
			Diploma in Chemical Scien	nce	
2	III		General Chemistry-I	Theory	4
			Analytical Procedures-I	Practical-2	2
	IV		General Chemistry-II	Theory	4
			Analytical Procedures-II	Practical-2	2
			Degree in Bachelor of Scien	nce	
3	V		Inorganic Chemistry	Theory	4
			Organic Chemistry	Theory	4
			Analytical Procedures -III	Practical-3	2
			Research Project	Project	Qualifying
	VI		Physical Chemistry	Theory	4
			Analytical Chemistry	Theory	4
			Analytical Procedures -IV	Practical-3	2
			Research Project	Project	Qualifying

Semester-wise Titles of the Papers in B.Sc. Chemistry

Purpose of the Program

The Importance of chemistry arises because so many other disciplines draw on certain chemical principles and concepts. The purpose of the undergraduate chemistry program at the university and college level is to prepare our students for all those fields where basic knowledge of chemistry is required including academia for careers as professionals in various industries and research institutions.

Program Outcomes

- **PO 1.** Students will have a firm foundation in the fundamentals and applications of chemical and scientific theories including those in analytical, inorganic, organic and physical chemistry.
- **PO 2.** Students will be able to design and carry out scientific experiments as well as accurately record and analyze the data of such experiments.
- **PO 3.** Students will develop skill in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- **PO 4.** Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
- **PO 5.** Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- **PO 6.** Students will be able to explain why chemistry is an integral activity for addressing social, economic, and environmental problems.
- **PO 7.** Students will be able to function as a member of an interdisciplinary problem-solving team.

	PROGRAM SPECIFIC OUTCOMES (PSOS)
	CERTIFICATE IN INTRODUCTORY CHEMISTRY
First Year	Certificate in Introductory Chemistry will give the student a basic knowledge of all the fundamental principles of chemistry like atomic structure, molecular polarity, bonding theories of different molecules, resonance concept, hyperconjugation, field effects, periodic properties of more than 111 elements, mechanism of organic reactions, stereochemistry, detailed study of states of matter including kinetic theories of gases, solid and liquid states, chemistry of aliphatic and aromatic compounds, chemical kinetics, its scope and first law of thermodynamics. Student will be able to understand the qualitative and quantitative chemical analysis of the compounds in the laboratory. This certificate course is definitely going to prepare the students for various fields of chemistry and will give an insight into all the branches of chemistry. It will enable students to join the diploma course (semester III and IV) in any University or College of Higher education in Uttarakhand
Second	DIPLOMA IN CHEMICAL SCIENCE
Year	
	Diploma in Chemical Science will provide the theoretical as well as practical knowledge of handling chemicals, apparatus, equipment and instruments. The knowledge about second law of thermodynamics, chemical equilibrium, phase equilibrium, electrochemistry, coordination chemistry, acid-base theories, chemistry of transition elements, halides, alcohols, phenols, aldehydes, ketones and carboxylic acids will enable the students to work as chemists in various industries. The experimental work during the diploma course will enhance the skill of the students regarding chemical and physical tests of inorganic as well as organic compounds along with some physical experiments which will be beneficial to achieve their goals in industrial sectors. It will enable students to join the Bachelor of Science course (semester V and VI) in any University or College of Higher education in Uttarakhand
Third Year	DEGREE IN BACHELOR OF SCIENCE
	Degree in Bachelor of Science programme aims to introduce very important aspects of modern-day course curriculum, namely, chemistry of nitrogen containing compounds, organometallic, lipids, fats, dyes, paints, reagents in organic synthesis, carbohydrates, proteins, biomolecules, data analysis, nano-chemistry, green chemistry, stability of coordination compounds, cement, paint, ceramics, glass, inorganic fertilizers, radioactivity, corrosion, magnetic behaviour of transition metal complexes, surface chemistry, quantum mechanics, solutions, third law of thermodynamics, photochemistry, and spectroscopic techniques. This knowledge will make the students skilled to work in various chemical industries like cement industries, agro product, paint industries, rubber industries, petrochemical industries, food processing industries, fertilizer industries, pollution monitoring and control agencies etc. It will also enable the students to understand the importance of the biomolecules in biological science and related fields. Upon completion of a degree, chemistry students will able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments. It will help a candidate to succeed at an entry-level position in chemical industry or a chemistry postgraduate program.

			Su	bject: Chemistry			
Year	Semester	Theory Paper	Units	Practical Paper	Units	Research Project	Total Credits of the Year subject
1	Ι	Fundamentals of Chemistry- I	 Atomic Structure and Periodic Properties Chemical Bonding-I Mechanism of Organic Reactions Stereochemistry of Organic Compounds States of Matter-I States of Matter-II 	Chemical Analysis-I	 Laboratory hazards and safety precautions Inorganic exercise (Acidic radicals including combinations and interfering radicals) Organic exercise Physical exercise 	NIL	4+2=6
	Π	Fundamentals of Chemistry- II	 Chemical Bonding-II Salient Features of <i>s</i>- and <i>p</i>-Block Elements Aliphatic Compounds Aromatic Compounds Chemical Kinetics and Catalysis Thermodynamics I 	Chemical Analysis-II	 Laboratory hazards and safety precautions Inorganic exercise (acid- base titrations) Organic exercise Physical exercise 	NIL	4+2=6
2	III	General Chemistry-I	 Chemistry of Transition Elements (First, second and third Transition Series) Coordination Chemistry-I Halides Alcohols and Phenols 	Analytical Procedures-I	 Laboratory hazards and safety precautions Inorganic mixture analysis (including basic radicals) Organic exercise Physical exercise 	NIL	4+2=6

	IV	General Chemistry-II	 Thermodynamics II Chemical Equilibrium, Phase Equilibrium Acids and Bases Chemistry of Inner Transition Elements Aldehydes and Ketones Carboxylic Acids Electrochemistry I Electrochemistry II 	Analytical Procedures-II	 Laboratory hazards and safety precautions Inorganic exercise (Redox titration) Organic exercise Physical exercise 	NIL	4+2=6
3	V	Inorganic Chemistry	 Metal-Ligand Bonding in Transition Metal Complexes Thermodynamic and Kinetic Aspects of Coordination Compounds Electronic Spectra of Transition Metal Complexes Magnetic Properties of Transition Metal Complexes Organometallic Chemistry Some Industrially Important Inorganic Materials 	Analytical Procedures -III	 Laboratory hazards and safety precautions Inorganic exercise (Synthesis) Organic exercise Physical exercise 	Research Project (Qualifying)	4+4+2=10
		Organic Chemistry	 Lipids and Fats Reagents in Organic Synthesis 				

VI	Physical	 Nitrogen containing organic Compounds Organometallic Compounds Dyes and Paints Carbohydrates and Proteins Surface Chemistry 	Analytical	1. Laboratory hazards and	Research	4+4+2=10
	Chemistry	 Elementary Quantum Mechanics Photochemistry Solutions and Colligative Properties Thermodynamics III Radiochemistry 	Procedures -IV	safety precautions 2. Physical exercise 3. Spectroscopic exercise/ Chromatographic technique 4. Inorganic exercise (Gravimetric)	Project (Qualifying)	
	Analytical Chemistry	 General Biochemistry Data Analysis Fundamentals of Nanochemistry Basics of Green Chemistry Analytical Techniques Spectroscopy 				

				Subject: Chemistry			
Course	Semester		Paper Title	Prerequisite for Paper	Elective for Major Subject	Hours per Semester	Total Credits of the Year subject
Certificate in Introductory	Ι	Theory-1	Fundamentals of Chemistry-I	Chemistry of 12 th standard	Yes open for all	60	4
Chemistry		Practical-1	Chemical Analysis-I	Chemistry of 12 th standard	Yes open for all	60	2
	II	Theory-1	Fundamentals of Chemistry-II	Passed Sem-I Theory paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-1	Chemical Analysis-II	Opted Sem-II Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
Diploma in Chemical Science	III	Theory-1	General Chemistry-I	Passed Certificate Course in Introductory Chemistry	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-2	Analytical Procedures-I	Opted Sem-III Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
	IV	Theory-1	General Chemistry-II	Passed Sem-III Theory Paper- 1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-2	Analytical Procedures-II	Opted Sem-IV Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
Degree in Bachelor of	V	Theory-1	Inorganic Chemistry	Passed Sem-III and Sem-IV Theory papers	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
Science		Theory-2	Organic Chemistry	Passed Sem-III and Sem-IV Theory papers	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-3	Analytical Procedures-III	Opted Sem-V Theory Paper-1 &2.	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Research Project				60	Qualifying
	VI	Theory-1	Physical Chemistry	Passed Sem-V Theory papers	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Theory-2	Analytical Chemistry	Passed Sem-V Theory papers Theory papers	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-3	Analytical Procedures-IV	Opted Sem-VI Theory Paper-1 &2	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Research Project				60	Qualifying

Pattern of examination theory papers

A. Theory

Each theory paper shall consist two sections A and B.

Section A: (Short answers type with reasoning); 45 marks, eight questions of seven marks each, any five have to be attempted).

Section B: (Long answers type);30 marks, two questions of fifteen marks each. Both the questions are compulsory with internal choice.

B. Internal assessment

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25. The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/ the Principal of the College for uploading onto the University examination portal.

C. Practical

The laboratory work of the students has to be evaluated periodically. The internal assessment (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total 12 marks for each semester shall be conducted during the semester. A minimum of 12 experiments covering all kinds of exercises have to be conducted during a semester. Maximum 5 marks of attendance can be given to the students. In each semester practical examination of 38 marks has to be conducted by two examiners (External and internal) having duration of 4 hours for I to IV Semester and 5 hours for V and VI Semester. The total number of students to be examined per batch should not be more than sixty. Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital.

Year	Semester	Course Code	Paper Title	Theory/Practical	Credits	
	Certificate in Introductory Chemistry					
1	Ι		Fundamentals of Chemistry-I	Theory	4	
			Chemical Analysis-I	Practical	2	
1	II		Fundamentals of Chemistry-II	Theory	4	
			Chemical Analysis-II	Practical	2	

Semester-I Paper-I (Theory) Course Title: Fundamentals of Chemistry-I

Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: First			
	Paper	-I Theory Subject: Chemistry			
Course Code:	Course Title: Fundamentals of Chemistry-I				

Course outcomes: There is nothing more fundamental to chemistry than the chemical bond. Chemical bonding is the language of logic for chemists. Chemical bonding enables scientists to take the 100-plus elements of the periodic table and combine them in myriad ways to form chemical compounds and materials. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods, and because of the periodic nature of the elements. Reaction mechanism gives the fundamental knowledge of carrying out an organic reaction in a step-by-step manner. This course will provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective. Students will gain an understanding of;

- ✓ Molecular geometries, physical and chemical properties of the molecules.
- ✓ Current bonding models for simple inorganic and organic molecules in order to predict structures and important bonding parameters.
- ✓ This course gives a broader theoretical picture in multiple stages in an overall chemical reaction.
- ✓ It describes reactive intermediates, transition states and states of all the bonds broken and formed.
- ✓ It enables to understand the reactants, catalyst, stereochemistry and major and minor products of any organic reaction. It describes the types of reactions and the kinetic and thermodynamic aspects one should know for carrying out any reaction and the ways how the reaction mechanism can be determined.
- ✓ The chapter stereochemistry gives the clear picture of two-dimensional and threedimensional structure of the molecules, and their role in reaction mechanism. The course will also strengthen the knowledge of students regarding complete picture of states of matter that includes gaseous, liquid, solid and colloidal states.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Total Number of Hours = 60

Unit	Content	Number of Hours
1	Atomic Structure and Periodic Properties: Dual nature of matter; de Broglie concept. Heisenberg uncertainty principle; its significance. Atomic orbitals, Schrödinger wave equation (no derivation); significance of ψ and ψ^2 . Quantum numbers, radial and angular wave functions and probability distribution curves, shapes of s, p and d orbitals. Aufbau energy diagram, Pauli's exclusion principle. Hund's rule of maximum multiplicity. Electronic configuration of elements (s block, p block and first series of d-block elements). Effective nuclear charge, Slater's rule.	12
	The general idea of Modern periodic table, atomic and ionic radii, ionization potential, electron affinity, electronegativity-definition, trends of variation in periodic table and their application in prediction and explaining the chemical behaviour of elements and compounds thereof.	
2	Chemical Bonding-I : Ionic bond, covalent bond-Valence Bond Theory and its limitations; various types of hybridization and shapes of different inorganic and organic molecules. Valence Shell Electron Pair Repulsion Theory (VSEPR) and shapes of NH ₃ , H ₂ O, H ₃ O ⁺ , SF ₄ , ClF ₃ , ICl ₂ ⁻ , TeF ₅ ⁻ NH ₄ ⁺ and other simple molecules/ions (CO ₂ , SO ₂ , SO ₃ , Cl ₂ O ₇ , SO ₄ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻ , PO ₄ ³⁻) including compounds of xenon.	8
	Resonance, hyperconjugation, field effects- inductive, mesomeric, electromeric effect	
3	Mechanism of Organic Reactions: Types of reagents- electrophiles and nucleophiles. Types of organic reactions. Energy considerations. Reactive intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples).	8
4	Stereochemistry of Organic Compounds: Types of isomerism- optical isomerism- elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centre, diastereomers, threo and erythro diastereomers, meso compounds, inversion, retention and racemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature. Geometrical isomerism: determination of configuration of geometrical isomers, E & Z system of	12

	nomenclature.	
5	States of Matter-I: Gaseous State- Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waal's equation of states, Critical phenomena – PV isotherms of real gases, relationship between critical constants and van der Waals constants. Molecular velocities: Root mean square, average and most probable velocities, qualitative discussion of the Maxwell's distribution of molecular velocities, Numerical problems.	12
	Liquid State-Intermolecular forces, Structural differences between solids, liquids and gases. Physical properties of liquids including their methods of determination: surface tension, viscosity, Numerical problems.	
6	States of Matter-II:	8
	Solid State: Introduction to crystalline materials, Definition of space lattice, unit cell, crystal planes, Miller indices, Laws of crystallography – (i) law of constancy of interfacial angles (ii) law of rationality of indices (iii) law of symmetry. Symmetry elements in crystals, X-ray diffraction by crystals. Bragg's equation, Numerical problems.	
	Colloidal State: Definition of colloids, classification of colloids. Solids in liquids (sols): properties – kinetic, optical and electrical; stability of colloids, protective action, Hardy-Schulze law, gold number.	

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.

- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- xvii. Bariyar, A., Singh, R.P. and Dwivedi, A., "Text Book for B. Sc. Chemistry I", Anu Books, 2019.

Suggested online links:

- 1. https://www.youtube.com/watch?v=ZeV3V0DjupQ&list=PLmxSS9XYst219YI3DjJ UP52APmR9bea1Y
- 2. <u>https://www.youtube.com/watch?v=q-</u> <u>P79gnqNR8&list=PLmUlqVgZsTVVRvO3R8g-x12EMc5vmcq_c</u>
- 3. https://www.youtube.com/watch?v=gahQYHs0c8s
- 4. https://www.youtube.com/watch?v=w2He_Q0Mf0c
- 5. https://www.youtube.com/watch?v=q1qMFcZV1Pk
- 6. <u>https://www.youtube.com/watch?v=nWTgMr6idf0</u>
- 7. <u>https://www.youtube.com/watch?v=JNLJyhqXaTc&t=10s</u>
- 8. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 9. https://onlinecourses.nptel.ac.in/noc22_cy36/preview
- 10. https://onlinecourses.swayam2.ac.in/cec20_lb01/preview

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method		Marks
Mid-term exam/ in-class or on-line tests/	15 marks	
home assignments/ group discussions/ or		
presentations		
Overall performance throughout	the	10 marks
semester, Discipline, participation	in	
different activities) & Attendance		

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard.

Suggested equivalent online courses: Further Suggestions:

Course Title: Chemical Analysis -1			
Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: First	
Paper-2 Practical Subject: Chemistry			
Course Code:	Course Title: Chemical Analysis-I		

Semester-I, Paper-II (Practical) Course Title: Chemical Analysis -I

Course outcomes:

Upon completion of this course, the students will have the knowledge and skills to: understand the laboratory methods and tests related to inorganic mixture analysis and estimation of surface tension of commercial products. Also, they can understand the absolute configuration of organic molecules with the help of models. The students will able to

- \checkmark Qualitatively estimate anions and cations in samples.
- ✓ Determine the relative surface tension of a given liquid.
- \checkmark Find out the absolute configuration of organic molecules.

Credits:2	Compulsory	
Max. Marks: 12+38	Min. Passing Marks:	
T_{1}		

Unit	Contents	Number of Hours
1	Laboratory hazards and safety precautions	6
2	Salt mixture analysis: Identification of acid radicals (three to four) including anions in combination and basic radicals upto II Group in the given salt mixture.	18
3	Organic exercise: Determination of absolute configuration of organic molecules using ball and stick models. Students are supposed sketch the structure of simple organic compounds showing their stereochemistry using Fischer Projection.	18
4	Physical exercise: Determination of relative surface tension of the given liquid using Stalagmometer.	18

Total Number of Hours = 60

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

	Evaluation method	Marks
--	-------------------	-------

Attendance	06 marks
Viva voce/Record and overall performance	06 marks

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard.

Suggested equivalent online courses:

Further Suggestions:

One exercise each from salt mixture analysis (acidic radicals), organic exercise (absolute configuration) and physical exercise (relative surface tension) shall be given in the examination.

Distribution of marks shall be as given below:

1. Inorganic salt analysis (Acidic and Basic radicals)	10
2. Organic exercise	12
3. Physical	11
4. Viva	05
5. Home assignment/internal assessment, lab record and attendance	12
Note:	

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester lab record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 04 (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Suggested Readings:

- i. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- ii. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- iii. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- iv. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- v. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.

Suggestive digital platforms web links:

- 1. <u>http://chemcollective.org/vlabs</u>
- 2. <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- 3. <u>https://wp.labster.com/chemistry-virtual-labs/</u>

Paper-I (Theory) Course Title: Fundamentals of Chemistry-II			
Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: Second	
Paper-I Theory Subject: Chemistry			
Course Code:	Course Title: Fundamentals of Chemistry-II		

Semester-II

Course outcomes: Upon successful completion of this course, the students will be able to describe the reactions shown by aliphatic and aromatic compounds. They will also able to understand the bonding in inorganic molecules, salient features of s- and p- block elements, different aspects of chemical kinetics, catalysis and first law of thermodynamics.

Credit	s: 4	Compulsory	
Max. Marks: 25+75		Min. Passing Marks:	
		Total Number of Hours = 60	
Units		Content	Number of
			Hours
1	applied to diatom molecules. MO diagr C ₂ , N ₂ , O ₂ , F ₂ , Ne ₂ , O theories. Multicentre Polarization of cova from dipole and elect polarizability; Fajan's bond and MO theory	H : Molecular Orbital Theory (MOT) as nic homonuclear/heteronuclear inorganic ams and bond order of H ₂ , He ₂ , Li ₂ , Be ₂ , B ₂ , CO, NO, HF difference between VB and MO bonding in electron deficient molecules. lent molecules, Percentage ionic character ronegativity difference. Polarizing power and s rule. Metallic bond- Electron Pool, valence ies. Weak interactions-hydrogen bonding in molecules and van der Waals interactions.	10
2	with respect to all per atomic & ionic rad behaviour, electropo affinity, hydration en polarization power, properties (reactivity hydrogen, halogens, a inert pair effect, pm halides, oxides and ox	- and p-Block Elements: General discussion eriodic (Occurrence, electronic configuration, dii, density, ionization potential, metallic ositive nature, electronegativity, electron ergy, flame colouration, photoelectric effect, boiling and melting point) and chemical towards water, oxygen, air and moisture, ammonia). Diagonal relationship, catenation, - $p\pi$, $d\pi$ - $p\pi$ bond, chemistry of hydrides, xyacids of p-block elements. Silicates, Boron (borazene and boron nitrides), interhalogen operty of iodine.	10

3	 Aliphatic Compounds: Chemical reactions of alkanes. Mechanism of free radical halogenation of alkanes. Cycloalkanes-Baeyer's strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings. The case of cyclopropane ring-bent or banana bonds. Chemical reactions of alkenes- mechanisms involved in hydrogenation, electrophilic and free radical additions, Markownikoff's Rule, hydroboration-oxidation, oxymercuration-reduction. Epoxidation, ozonolysis, hydration, hydroxylation and oxidation with KMnO4, Polymerization of alkenes. Substitution at the allylic and vinylic positions of alkenes. Industrial applications of ethylene and propene. Chemical reactions of alkynes, acidity of alkynes. Mechanism of electrophilic and nucleophilic addition reactions, hydroboration-oxidation, oxidation, metal- ammonia reduction, oxidation and polymerization. 	10
4	Aromatic Compounds: Aromaticity- the Hückel rule, aromatic ions. Aromatic electrophilic substitution- general pattern of the mechanism, role of σ and π complexes. Mechanism of nitration, halogenation, sulphonation, mercuration and Friedel- Crafts reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio. Side chain reactions of benzene derivatives.	10
5	Chemical Kinetics and Catalysis: Chemical kinetics and its scope, rate of a reaction, factors influencing the rate of a reaction–concentration, temperature, pressure, solvent, light, catalyst; hetero and homocatalysis, significance. Inhibitors, poisons and promoters. Concentration dependence of rates of simple reaction, Molecularity, Order of reaction-zero order, first order, second order, pseudo-order, Radioactive decay a first order phenomenon, half-life period, Methods of determination of the order of reaction-differential method, method of integration, method of half-life period and isolation methods, Numerical problems.	10
6	Thermodynamics I: Definition of thermodynamic terms, system, surroundings etc. Types of thermodynamic systems and thermodynamic processes. Intensive and extensive properties. Concept of heat and work, first law of thermodynamics, definition of internal energy and enthalpy. Heat capacity – heat capacities at constant volume and at constant pressure and their relationship, calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and reversible conditions. Thermochemistry; standard state, Standard enthalpy of formation – Hess's law of heat summation and its application. Temperature dependence of enthalpy, Kirchoff's equation, Numerical problems.	10

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- xv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- xvii. Bariyar, A., Singh, R.P. and Dwivedi, A., "Text Book for B. Sc. Chemistry I", Anu Books, 2019.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=Gg4-</u>
- go6tTiA&list=PLmxSS9XYst208kJs0npO_v_L-AGkHZJIS
- 2. <u>https://www.youtube.com/watch?v=sz17_NnMPak&t=51s</u>
- 3. <u>https://www.youtube.com/channel/UCUxhnr9H2IYKsuRypG0MAfw/videos</u>
- 4. <u>https://onlinecourses.swayam2.ac.in/nce19_sc15/preview</u>
- 5. <u>https://www.openlearning.com/courses/introduction-to-physical-chemistry/?cl=1</u>
- 6. <u>https://www.careers360.com/university/indian-institute-of-technology-</u> bombay/chemistry-of-main-group-elements-certification-course
- 7. https://onlinecourses.swayam2.ac.in/cec20_lb01/preview
- 8. <u>https://nptel.ac.in/courses/104/103/104103071/</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities) and Attendance	10 marks

Course prerequisites: To study this course, a student must have passed Sem-I, Theory paper-1

Suggested equivalent online courses: Further Suggestions:

Semester-II, Paper-II (Practical) Course Title: Chemical Analysis -II

Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: Second
	Paper-2	Practical Subject: Chemistry
Course Code:	Course Title: Chemical Analysis –II	

Course outcomes:

After completing this course, the students will be able to quantitatively find out the amount of acid or base in the samples, to qualitatively differentiate among different classes of organic compounds and to measure the relative viscosity of a given liquid.

	Credits:2	Compulso	ry
	Max. Marks: 12+38	Min. Passing Marks	
	Total Nu	umber of Hours = 60	
Unit	Contents		Number of Hours
1	Laboratory hazards and safety precautions		6
2	Inorganic exercise: Acid-base titrations; preparation of a solution in normal/molar terms, its standardization using a primary standard solution, determination of the strength of unknown solution. For example: preparation of NaOH solution (secondary standard say N/10), preparation of (COOH) ₂ solution (primary standard say N/10), standardization of NaOH solution titrating it against (COOH) ₂ solution using phenolphthalein (indicator) and then determination of the strength of given HCl solution.		18

3	Organic exercise: Differentiation between alkanes, alkenes and alkynes. Differentiation between aliphatic and aromatic compounds using chemical and physical tests.	18
4	Physical exercise: Determination of relative viscosity of the given liquid using Ostwald viscometer.	18

Suggested Readings:

- i. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- ii. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- iii. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- iv. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- v. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- vi. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.
- vii. Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London.
- viii. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggestive digital platforms web links

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	06 marks
Viva voce/Record and overall performance	06 marks

Course prerequisites: To study this course, a student must have opted Semester-II Theory Paper-I

Suggested equivalent online courses:

Further Suggestions:

One exercise each from volumetric analysis (acid-base titration), organic exercise (tests for alkanes, alkenes, alkynes, aliphatic and aromatic compounds) and physical exercise (relative viscosity) shall be given in the examination.

Distribution of marks shall be as given below:

1. Inorganic exercise	12
2. Organic exercise	11
3. Physical	10
4. Viva	05

5. Home assignment/internal assessment, lab record and attendance 12

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 04 (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Year	Semester	Course	Paper Title	Theory/Practical	Credits
		Code			
	•	Diplom	a in Chemical Scie	ence	
2	III		General	Theory	4
			Chemistry-I		
			Analytical	Practical	2
			Procedures-I		
2	IV		General	Theory	4
			Chemistry-II		
			Analytical	Practical	2
			Procedures-II		

Semester-III Paper-I (Theory) Course Title: General Chemistry-I

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third
	Paper-I Theory Subject: Chemistry	
Course Code:	Course Title: General Chemistry-II	

Course outcomes: This paper provides detailed knowledge of synthesis of various classes of organic compounds and functional groups inter conversion. Organic synthesis is the most important branch of organic chemistry which provides jobs in production & QC departments related to chemicals, drugs, medicines, FMCG etc. industries.

- \checkmark It relates and gives an analytical aptitude for synthesizing various industrially important compounds.
- ✓ This paper also provides a detailed knowledge on the elements present in our surroundings, their occurrence in nature. Their position in periodic table, their physical and chemical properties. This paper also gives detailed understanding of the d-block elements and their characteristics.

- ✓ After successful completion of this course, the students will be able to gather the information regarding Werner's theory and VBT of transition metal complexes.
- ✓ Students will be able to learn the basic concepts of spontaneity, chemical and phase equilibrium and able to apply these concepts in predicting the spontaneous reactions and will be able to solve the numerical problems based on these concepts.

Credit: 4	Compulsory	
Max. Marks: 25+75	Min. Passing Marks:	
Total No. of Hours- = 60		

Unit	Contents	Number of Hours
1	Chemistry of Transition Elements (First, second and third Transition Series): Characteristic properties of the elements; electronic configuration, atomic & ionic radii, oxidation states and stability of uncommon oxidation states, ionization energy, boiling & melting points, complex compound formation, colour, catalytic properties and magnetic properties. coordination number and geometry.	10
	Comparative treatment of 3d, 4d and 5d elements and their analogues in respect of occurrence, atomic & ionic radii, oxidation state, ionization energy, complex formation tendency, magnetic behaviour, geometry and colour.	
2	Coordination Chemistry-I: Definition, terminology (ligand, coordination number, coordination sphere, complex ion etc.), Nomenclature of coordination compounds (IUPAC system), Werner's theory for coordination compounds; its experimental verification, effective atomic number (EAN) concept, 18-electron rule, stability of complexes and factors contributing to the stability. Chelates- Introduction, factors affecting the stability of chelates, thermodynamic origin of stability, applications. Valence Bond Theory (VBT) for coordination compounds, geometry of complexes (tetrahedral, octahedral, square planar), magnetic properties of complex compounds.	10
3	Halides: Chemical reactions. Alkyl, aryl and vinyl halides. Mechanism of nucleophilic substitution reactions, S_N2 and S_N1 reactions with energy profile diagrams.	8
4	Alcohols and Phenols: Alcohols: Reactions of alcohols. Dihydric alcohols-methods of preparation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc) ₄ and HIO ₄] and pinacol-pinacolone rearrangement. Trihydric alcohols-methods of formation, chemical reactions of glycerol.	12

	Phenols: Physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols-electrophilic aromatic substitution, acylation and carboxylation. Mechanism of Fries rearrangement, Claisen condensation, Gatterman synthesis, Houben-Hoesch reaction, Lederer-Manasse reaction and Reimer- Tiemann reaction.	
5	Thermodynamics II: Second law of thermodynamics, need of the law, different statements of the law. Carnot cycle and its efficiency, Carnot theorem. Thermodynamic scale of temperature. Concept of entropy: entropy as a state function, entropy as a function of V and T, entropy as a function of P and T, entropy change in physical and chemical processes, entropy change for reversible, irreversible and equilibrium condition. Clausius inequality, entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases. Gibbs free energy and Helmholtz work functions. Criteria for thermodynamic equilibrium and spontaneity, advantage Gibbs free energy and Helmholtz work functions over entropy change for spontaneity. Variation of G and A with P, V and T, Gibbs-Helmholtz equation, Numerical problems.	12
6	 Chemical Equilibrium: The law of mass action, free energy and equilibrium constant, factors influencing equilibrium constant, relationship between Kp and Kc. Le-Chatelier's principle, Numerical problems. Phase Equilibrium: Statement and meaning of the terms: phase, component and degree of freedom, Gibbs phase rule, phase equilibria of one component systems- water, carbon dioxide and sulphur. Raoult's and Henry's law. 	8

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. Second Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.

- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=Fmclk9oUkEE&list=PLmxSS9XYst20Pz1SpRl4jd</u> <u>crv-zh1AoYy</u>
- 2. <u>https://www.youtube.com/watch?v=y67STFWoQ3A&list=PLmUlqVgZsTVV9zQAF-umZzs65MzOU8Ty9</u>
- 3. <u>https://www.youtube.com/watch?v=xo2sRayaVyc&list=PLmUlqVgZsTVUAEThwJsJ</u> <u>w_WPE87_yfhCO</u>
- 4. <u>https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm</u>
- 5. <u>https://nptel.ac.in/courses/104/103/104103071/#</u>
- 6. <u>https://swayam.gov.in/</u>
- 7. https://nptel.ac.in/courses/104/103/104103071/

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities) and Attendance	10 marks

Course prerequisites: To study this course, a student must have passed Certificate Course in Introductory Chemistry.

Suggested equivalent online courses: Further Suggestions:

Course The. Analytical Procedures-1			
Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third	
Paper-II Practical Subject: Chemistry			
Course Code:	Course Title: Analytical Procedures-I		

Semester-III Paper-II (Practical) Course Title: Analytical Procedures-I

Course outcomes:

After completing this course, the students will be able to test the inorganic mixtures of acidic and basic radicals in given samples, to qualitatively differentiate between alcohols and phenols and determine the critical solution temperature of partially miscible liquids.

	Credits:2		Compulsory	
Ν	Max. Marks: 12+38	Min. Passing Marks:		
	Total Nu	mber of Hours =	= 60	
Unit	Contents		Number of Hours	
1	Laboratory hazards and safety	precautions	6	
2	Inorganic exercise: Complete analysis of inorgani including both acid and basic a special emphasis on the role ion effect and solubility produ	radicals with of common	30	
3	Organic exercise: Functional for alcohols and phenols. D between alcohols and phenols and phenols and physical tests.	oifferentiation	12	
4	Physical exercise: Detern critical solution temperature (mination of CST)	12	

Suggested Readings:

- i. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- ii. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wordsworth Publishing Company, Belmont, California, USA, 1988.
- iii. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- iv. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- v. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- vi. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.
- vii. Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London.
- viii. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggestive digital platforms web links

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	06 marks
Viva voce/Record and overall performance	06 marks

Course prerequisites: To study this course, a student must have opted Sem-III Theory Paper-1

Suggested equivalent online courses: Further Suggestions:

One exercise each from Inorganic mixture (qualitative), organic exercise (tests for alcohols and phenols) and physical exercise (critical solution temperature) shall be given in the examination.

Distribution of marks shall be as given below:

0	
1. Inorganic exercise	10
2. Organic exercise	12
3. Physical exercise	11
4. Viva	05
5. Home assignment/internal assessment, lab record and attendance	12
Note:	

- Note: Th
 - The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
 - Less than zero mark will not be awarded.
 - The total number of students to be examined per batch shall not be more than sixty.
 - Duration of the practical examination shall be of 04 (four) hours.
 - Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Semester-IV Paper-I (Theory) Course Title: General Chemistry-II

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Fourth
--	--------------	------------------

Paper-I Theory Subject: Chemistry	
Course Code:	Course Title: General Chemistry-II

Course outcomes: This paper provides detailed knowledge of synthesis of aldehydes, ketones, carboxylic acids and functional groups inter conversion. The students will be able to describe the concepts of electrochemistry in detail and its applications. Also, they will be able to solve the numerical problems based on these concepts. Students will be able to define the acids and bases on the basis of various concepts/ theories and will be able to identify the position of various elements in the periodic table and able to explain their properties on the basis of their position.

	Credits: 4	Compulsory	
	Max. Marks: 25+75 Min. Passing Marks:		s:
Unit	Total No. of Hours- = 60 Contents		Number of Hours
1	Acids and Bases: Arrhenius conc Lux-Flood and Lewis concept of a Acid-Base Theory: Classification of soft. Pearson's hard and soft acid b and hardness and softness. Symbios and softness, electronegativity and the solvent and strength of acids an in non-aqueous media.	cids and bases; Hard and Soft of acids and bases as hard and ase concept, acid base strength is, theoretical basis of hardness hardness and softness; Role of	10
2	Chemistry of Inner Transitio Lanthanides: Electronic configurati ionic radii, lanthanide contraction a formation, colour; Methods of separ crystallization, fractional precipitat solvent extraction and ion exchange Chemistry of Actinides: General configuration, atomic & ionic radii, states and complex formation.	on, oxidation states, atomic & and its consequences, complex ration of lanthanides- fractional ion, change in oxidation state, methods. features of actinides-electronic	10
3	Aldehydes and Ketones: Compar aliphatic and aromatic aldehydes nucleophilic additions to carbonyl g on benzoin, aldol, Perkin and Condensation with ammonia and ir Mannich reaction. Use of acetals as aldehydes, Baeyer-Villiger oxidar reaction, MPV, Clemmensen, Wolf reductions. Halogenation of enoliza α -, β -unsaturated aldehydes and keto	and ketones. Mechanism of group with particular emphasis Knoevenagel condensation. ts derivatives; Wittig reaction, protecting group. Oxidation of tion of ketones, Cannizzaro ff-Kishner, LiAlH4 and NaBH4 ble ketones. An introduction to	10
4	Carboxylic Acids: Reactions of ca Zelinsky reaction. Synthesis of acid	arboxylic acids, Hell-Volhard-	10

	Reduction of carboxylic acids, mechanism of decarboxylation. Methods of formation and chemical reactions of halo acids, hydroxy acids- malic, tartaric, and citric acids. Methods of preparation and chemical reactions of unsaturated monocarboxylic acids. Dicarboxylic acids-methods of preparation and effect of heat and dehydrating agents.	
5	Electrochemistry I: Electrical transport-conduction in metals and electrolytic solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution. Arrhenius theory of electrolytic dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law, its uses and limitations, Numerical Problems.	8
6	Electrochemistry II: Oxidation state, types of redox reactions, balancing of chemical reactions by ion electron and oxidation state method. Computations of equivalent weights. Types of reversible electrodes-gas-metal ion, metal-metal ion, metal-insoluble salt anion and redox electrodes. Electrode reactions, Nernst equation, derivation of cell EMF and single electrode potential, standard hydrogen electrode-reference electrode, standard electrode potential, sign conventions, electrochemical series and its significance. Electrolytic and Galvanic cells-reversible and irreversible cells, conventional representation of electrochemical cells. EMF of a cell and its measurements. Calculation of thermodynamic quantities of cell reactions (Δ G, Δ H and K), Numerical Problems.	12

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. Second Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.

- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- xv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=UJgzQ5XP8wQ&list=PLmxSS9XYst20FfphDeS0</u> <u>3pqkcuJk0vuvv</u>
- 2. <u>https://www.youtube.com/watch?v=2G79lCT5Os8&list=PLmxSS9XYst23WTFnTWu</u> <u>Rg-Ww0k6foth7e</u>
- 3. <u>https://www.youtube.com/watch?v=SNXFYz31iFI&list=PLmUlqVgZsTVUfjMBLDQ</u> <u>vNLUbF9CIrEsef</u>
- 4. <u>https://www.youtube.com/watch?v=1t0GDMSzZ9A&list=PLmxSS9XYst21dec_6u2y</u> <u>WWj295Y8pHGrA</u>
- 5. <u>https://swayam.gov.in/</u>
- 6. <u>https://www.coursera.org/learn/physical-chemistry</u>
- 7. <u>https://www.mooc-list.com/tags/physical-chemistry</u>
- 8. <u>https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm</u>
- 9. <u>https://nptel.ac.in/courses/104/103/104103071/</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities) and Attendance	10 marks

Course prerequisites: To study this course, a student must have had Passed Sem-III Theory Paper-1

Suggested equivalent online courses:

Further Suggestions:

Course Title: Analytical Procedures-II		
Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Fourth
Paper-II Practical Subject: Chemistry		
Course Code:	Course Title: Analytical Procedures-II	

Semester-IV Paner-II (Practical)

Course outcomes:

After completing this course, the students will be able to determine the concentrations of oxidising and reducing agents through double titration, qualitatively differentiate between aldehydes, ketones and carboxylic acids and determine the solubility of salts.

Credits:2	Compulsory
Max. Marks: 12+38	Min. Passing Marks:

	Total Number of Hours $= 60$	
Unit	it Contents Number of Hour	
1	Laboratory hazards and safety precautions	6
2	Inorganic exercise: Volumetric exercises (double titration) based on redox reactions involving internal as well as external indicators.	18
3	Organic exercise: Preliminary and Functional group tests for aldehydes, ketones and carboxylic acids (both aliphatic and aromatic).	18
4	Physical exercise: Determination of solubility of salts.	18

Suggestive digital platforms web links

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. http://chemcollective.org/vlabs

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

I	

Evaluation method	Marks		
Attendance	06 marks		
Viva voce/Record and overall performance	06 marks		

Course prerequisites: To study this course, a student must have Opted Sem-IV Theory Paper-1

Suggested equivalent online courses:

Further Suggestions:

One exercise each from inorganic volumetric analysis (quantitative), organic exercise (tests for aldehydes, ketones and carboxylic acids) and physical exercise (solubility of salts) shall be given in the examination.

Distribution of marks shall be as given below:

Inorganic exercise	12
Organic exercise	11
Physical exercise	10
Viva	05
Home assignment/internal assessment, lab record and attendance	12
	Organic exercise Physical exercise Viva

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 04 (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Year	Semester	Course	Paper Title	Theory/Prac	Credits
		Code		tical	
		Degree i	n Bachelor of Science		
3	V		Inorganic Chemistry	Theory	4
			Organic Chemistry	Theory	4
			Analytical Procedures-III	Practical	2
3	VI		Physical Chemistry	Theory	4
			Analytical Chemistry	Theory	4
			Analytical Procedures-IV	Practical	2

Semester-V

Paper-I (Theory) Course Title: Inorganic Chemistry

Programme/Class: Degree Year: Third	Semester: Fifth
-------------------------------------	-----------------

in Bachelor of Science	
	Paper-1 Theory Subject: Chemistry
Course Code:	Course Title: Inorganic Chemistry

Course Outcomes: Upon successful completion of this course, the students will be able to describe the stability, crystal field theory, electronic spectra and magnetic properties of coordination compounds. They will also learn about organometallic compounds, some industrially important inorganic materials and their applications in various industries. It will assist them to get a suitable job in the relevant industrial and scientific field.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Total Number of Hours = 60

Unit	Contents	Number of Hours
1	Metal-Ligand Bonding in Transition Metal Complexes: Limitations of valence bond theory, an elementary idea about crystal field theory (CFT); crystal field splitting of octahedral and tetrahedral complexes, tetragonal distortion (Jahn-Teller distortion, crystal field splitting of square planar and trigonal bipyramidal complexes, factors affecting the crystal-field parameters, calculation of crystal field stabilization energy (CFSE), spectrochemical series. Applications (color and magnetic properties) and limitations CFT. Comparison between VBT and CFT.	10
2	Thermodynamic and Kinetic Aspects of Coordination Compounds: Stability of metal complexes- thermodynamic and kinetic stability, stable and unstable complexes, inert and labile complexes, stepwise and overall stability constants, relationship between the stepwise and overall stability constants, factors affecting the thermodynamic and kinetic stabilities of coordination compounds. Chelate effect and its thermodynamic origin. Determination of binary formation constants by pH-metry and spectrophotometry	10
3	Electronic Spectra of Transition Metal Complexes: Types of electronic transitions, selection rules for d-d transitions, calculations of spectroscopic ground states (Russell Saunders/L-S coupling), Orgel energy level diagram for d^1 , d^4 and d^6 , d^9 tetrahedral and octahedral complexes, discussion of the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complex ion.	8
4	Magnetic Properties of Transition Metal Complexes: Origin of magnetic behavior, concept of magnetic susceptibility, diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism and antiferromagnetism, magnetic moments, quenching of orbital magnetic moment by crystal field, magnetic susceptibility- definition relationship with temperature, Curie law and Curie Weiss law. methods of determining magnetic susceptibility;	10

	Gouy's and Quincke's methods, magnetic moment, spin only formula, correlation of μ_s and μ_{eff} values, orbital contribution to magnetic moments, application of magnetic moment data for 3d metal complexes.	
5	Organometallic Chemistry: Definition, nomenclature and classification based on nature of metal-carbon bond. EAN and 18-electron rule. Definition, nomenclature, classification, general methods of preparation of organometallic compounds and a brief account of metal-ethylenic complexes. Applications of organometallic compounds-Ziegler-Natta catalyst, Wilkinson catalyst (No mechanism).	8
6	Some Industrially Important Inorganic Materials:	14
	Silicones, siloxanes, polymethylhydrosiloxanes, their applications. Phosphazenes, nature of bonding in triphosphazenes. Aluminosilicates- Feldspars, Ultramarines, Zeolites. Clays and Pillared Clays.	

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- iii. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- iv. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- v. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vi. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=0BQ38GEYF7s&list=PLmxSS9XYst22OYcJbKW</u> <u>q66APcEq5pVsL1</u>
- 2. <u>https://www.youtube.com/watch?v=9oQcm281TT0&list=PLmxSS9XYst20MhuKSMR</u> <u>EzLhG4ZBIdNys9</u>

- 3. <u>https://www.youtube.com/watch?v=WGd4gOncw9s&list=PLmxSS9XYst22CtJwFrX</u> <u>W_VA9kCp7OP0kn</u>
- 4. <u>https://www.youtube.com/watch?v=R4rPlpWT1cA&list=PLmxSS9XYst21uxf3tsohnD</u> <u>UmTRFrvfVv8</u>
- 5. <u>https://www.youtube.com/watch?v=3TWLAJuVN0c&list=PLmxSS9XYst23hk5m9-MsHTpbADe1Mx-p8</u>
- 6. <u>https://www.youtube.com/watch?v=0k4ryWpwhmo&list=PLmxSS9XYst22xP0d02Utc</u> <u>Ilgt0GIofvVm</u>
- 7. <u>https://www.youtube.com/watch?v=0ZBMRjyHWfY&list=PLmxSS9XYst205pTMkW</u> <u>PmDa3lv0s6DFoXM</u>
- 8. <u>https://www.youtube.com/watch?v=najS_fXL38U&list=PLmxSS9XYst23yE3f2Kqsir4</u> <u>lQ1dTmofFv&index=6</u>
- 9. <u>https://www.youtube.com/watch?v=3VoKRgPj7OI&list=PLmxSS9XYst23yE3f2Kqsir</u> <u>4lQ1dTmofFv&index=8</u>
- 10. <u>https://www.youtube.com/watch?v=57hQHf1E3PE&list=PLmxSS9XYst23yE3f2Kqsir</u> <u>4lQ1dTmofFv&index=7</u>
- 11. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy19/
- 12. <u>https://onlinecourses.nptel.ac.in/noc22_cy02/preview</u>
- 13. <u>https://nptel.ac.in/courses/104/105/104105033/</u>
- 14. <u>https://nptel.ac.in/courses/104/101/104101079/</u>
- 15. <u>https://onlinecourses.nptel.ac.in/noc21_cy12/preview</u>
- 16. <u>https://nptel.ac.in/courses/104/108/104108062/</u>
- 17. <u>https://onlinecourses.nptel.ac.in/noc21_cy36/preview</u>
- 18. <u>https://onlinecourses.nptel.ac.in/noc22_cy05/preview</u>
- 19. <u>https://nptel.ac.in/courses/104/105/104105033/</u>
- 20. <u>https://www.york.ac.uk/media/chemistry/research/douthwaite/Metal-</u> Ligand%20bonding%20and%20Inorganic%20reaction%20mechanisms.pdf
- 21. https://nptel.ac.in/courses/104/106/104106089/
- 22. <u>http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000658/M014</u> 009/ET/1456899566CHE_P3_M5_etext.pdf
- 23. <u>http://ddugu.ac.in/epathshala_content1.aspx</u>
- 24. https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf
- 25. <u>http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/chemistry/07.inorganic_chemistry-</u>

ii/31.magnetic_properties_of_transition_metal_ions/et/6388_et_che p7_m31_etext.pdf

- 26. https://egyankosh.ac.in/bitstream/123456789/15794/1/Unit-7.pd
- 27. https://www.hhrc.ac.in/ePortal/Chemistry/IImscchem-18pche3-unit1-sv.pdf
- 28. <u>http://www.du.edu.eg/upFilesCenter/sci/1596861612.pdf</u>
- 29. https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf
- 30. <u>https://nptel.ac.in/courses/104/105/104105103/</u>
- 31. <u>https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf</u>
- 32. <u>https://nptel.ac.in/content/storage2/courses/103107086/module1/lecture1.pdf</u>
- 33. <u>https://nptel.ac.in/content/storage2/courses/103107086/module4/lecture1/lecture1.pdf</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

	Evaluation 1	Marks				
Mid-term exam/ in-class or on-line tests/			15 marks			
	gnments/ group					
presentation	ons					
Overall performance throughout the				10 marks		
semester,	Discipline,					
different activities) and Attendance						

Course prerequisites: To study this course, a student must have passed Sem-III and Sem-IV Theory papers.

Suggested equivalent online courses:

- 1. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Further Suggestions:

Semester-V Paper-II (Theory) Course Title: Organic Chemistry

course miller of guine chemistry						
Programme/Class: Degree in Bachelor of Science	Year: Third	Semester: Fifth				
Paper-II Theory Subject: Chemistry						
Course Code:	Cou	rse Title: Organic Chemistry				

Course Outcomes: Upon successful completion of this course, the students should be able to describe the chemistry of nitrogen containing compounds, the basic understanding of the chemistry of industrially important materials such as lipids, fats, soaps, detergents, dyes, paints and reagents in organic synthesis. Upon completion of this course students may get job opportunities in food, soap, detergent, paint and other organic material based synthetic labs and industries. Biomolecules are important for the functioning of living organisms. These molecules perform or trigger important biochemical reactions in living organisms. When studying biomolecules, one can understand the physiological function that regulates the proper growth and development of a human body. This course aims to introduce the students with basic experimental understanding of carbohydrates and proteins.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:
	C11 (0

Total Number of Hours = 60

Unit						Number of Hours	
1	Lipids	and	Fats:	Lipids-Definition,	categories,	biological	12

	functions, metabolism, nutrition and health, tests, examples. Fats- Definition, biological importance, metabolism, digestion and it's metabolism. Soaps, Detergents and their action mechanism.	
2	Reagents in Organic Synthesis: Reagent compounds, types of reagents, acetylene, ammonia, Bayer's reagent, NBS, n-butyl lithium, CAN, chromic acid, chromium trioxide, diborane, DMSO, dioxane, Fehling reagent, Grignard reagent, hydrazide, hydrogen peroxide, LAH, OsO ₄ , PCl ₅ , potassium dichromate, potassium permanganate, Raney Ni, silver nitrate, sodium borohydride, NaH, THF, TMS, SOCl ₂ , Tollen's reagent.	12
3	Nitrogen Containing Organic Compounds: Chemical reactions of nitroalkanes. Mechanism of nucleophilic substitution in nitroarenes and their reduction in acidic, neutral and alkaline medium. Picric acid.	14
	Halo nitroarenes-reactivity, structure and nomenclature of amines. Physical properties. Separation of mixture of primary, secondary and tertiary amines. Structural features affecting basicity of amines. Amine salts as phase-transfer catalysts. Preparation of alkyl and aryl amines (reduction of nitro compounds, nitriles), reductive amination of aldehydic and ketonic compounds. Gabriel- phthalimide reaction, Hofmann bromamide reaction. Reaction of amines, electrophilic aromatic substitution in aryl amines, reaction of amines with nitrous acid. Synthetic transformations of aryl diazonium salts, azo coupling.	
4	Organometallic Compounds: Organ magnesium compounds; the Grignard reagent-formation, structure and chemical reactions. Organozinc compounds; formation and chemical reactions.	10
5	Dyes and Paints: Color and constitution, types of dyes, Alizarin, Indigo, Congo red, Malachite green, Methylene blue, Phenolphthalein, Methyl orange. Paints and Varnishes: Definition, components, chemistry, applications.	10
6	Carbohydrates and Proteins: Carbohydrates: Classification and nomenclature. Monosaccharides, mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides. Erythro and threo diastereomers. Conversion of glucose into mannose. Formation of glycosides, ethers and esters. Cyclic structure of D(+)-glucose. Mechanism of mutarotation. General study of disaccharides.	12
	Proteins : Classification, structure and stereochemistry of amino acids. Acid-base behavior, isoelectric point and electrophoresis. Classification of proteins.	

- i. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- ii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- iv. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- v. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- vi. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- vii. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- viii. Bahl, A. and Bahl, B.S. a "Advance Organic Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=xBNv80Dg6nI&list=PLmUlqVgZsTVUk5NkroU</u> <u>mYXvbterBXbk_J</u>
- 2. <u>https://www.youtube.com/watch?v=UgbaIFI_q6E</u>
- 3. <u>https://www.youtube.com/watch?v=tz0BrCqPTV0&t=15s</u>
- 4. <u>https://www.youtube.com/watch?v=2sHlLNzTpUU&t=4s</u>
- 5. <u>https://www.youtube.com/watch?v=ALaTCbetFSg&t=210s</u>
- 6. <u>https://www.youtube.com/watch?v=kruIzuor5v8</u>
- 7. <u>https://www.youtube.com/watch?v=IuERNLx-J7k&t=19s</u>
- 8. <u>https://www.youtube.com/watch?v=RW7K1YbpNxk&t=1414s</u>
- 9. <u>https://www.youtube.com/watch?v=LcUoeFe0iN8</u>
- 10. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 11. <u>https://nptel.ac.in/courses/104/103/104103111/</u>
- 12. https://nptel.ac.in/courses/104/103/104103071/
- 13. <u>https://onlinecourses.nptel.ac.in/noc19_cy24/preview</u>
- 14. https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod10.pdf

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Sem-III and Sem-IV Theory papers.

Further Suggestions:

Semester-v, Paper-III (Practical)			
Course Title: Analytical Procedures-III			
Programme/Class: Certificate in Introductory/General Chemistry	Year: Third	Semester: Fifth	
Paper-III Practical Subject: Chemistry			
Course Code: Course Title: Analytical Procedures-III			

Samostar-V Papar-III (Practical)

Course outcomes:

Upon completion of this course, the students will have the knowledge and skills to understand the synthetic methods related to inorganic and organic fields. Also, they can easily analyze the nitrogen containing compounds and separate the binary organic mixture.

Credits:2	Compulsory
Max. Marks: 12+38	Min. Passing Marks:
T + 1 N = 1	

Unit	Contents	Number of Hours
1	Laboratory hazards and safety precautions	6
2	Inorganic exercise: Inorganic synthesis – cuprous chloride, potash alum, chrome alum, ferrous oxalate, ferrous ammonium sulphate, tetraamminecopper(II) sulphate and hexaamminenickel(II) chloride. Crystallization of compounds.	14
3	Organic exercise: Organic qualitative analysis: Analysis of Nitrogen containing organic compounds (detection of elements, amines, nitro, amides and anilides) 	40

Total Number of Hours = 60

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	06 marks
Viva voce/Record and overall performance	06 marks

Course prerequisites: To study this course, a student must have opted Sem-V Theory Paper-1 &2

Suggested equivalent online courses:

- 1. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Further Suggestions:

One exercise each from inorganic synthesis, organic qualitative analysis and organic synthesis shall be given in the examination.

Distribution of marks shall be as given below:

1.	Inorganic exercise	10
2.	Organic exercise	23
3.	Viva	05
4.	Home assignment/internal assessment, lab record and attendance	12

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 05(five) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Semester-VI				
Paper-I (Theory)				
Course Title: Physical Chemistry				
Programme/Class: Degree in Bachelor of ScienceYear: ThirdSemester: Sixth				
Paper-I Theory Subject: Chemistry				
Course Code:	Course Title: Physical Chemistry			

Semester-VI

Course outcomes: The core concepts of Physical Chemistry have been included in this semester with a view that students' command over these topics will help them to understand the higher chemistry in PG classes. Their understanding of Photochemistry and Solutions will help him to explain the day today phenomenon of the relevant filed whereas. Thermodynamics will help them to understand the natural flow of energy. Learning the Quantum Mechanics will help them to praise the beauty of behavior of fundamental particles. It will assist them to get a suitable job in the relevant industrial and scientific field.

	Credits:4	Compulsory	
	Max. Marks: 25+75 Min. Passing Marks:		
	Total Number	of Hours = 60	1
	Conten	ts	Number of
Unit			Hours
1	Surface Chemistry: Definition Adsorption. Chemical and physical adsorption. Isotherm and Isobar. Quantitative treatment of adsorption adsorption model and their applica adsorption model. Adsorption in catalyzed reactions.	adsorption, Factors affecting Free energy of adsorption. Freundlich's and Langmuir's tions. Limitation of Langmuir	10
2	Elementary Quantum Mechanics: radiation law, photoelectric effect, E (no derivation) and its defects. hypothesis, Heisenberg's uncertaint Hamiltonian operator, Schröding importance, physical interpretation Numerical Problems.	Bohr's model of hydrogen atom Compton effect, de Broglie ty principle, operator concept, er wave equation and its	12
3	Photochemistry: Interaction of rac between thermal and photoche photochemistry; Grothuss-Drapper Beer's law, Stark-Einstein law, various processes occurring in th phosphorescence, non-radiative pr intersystem crossing), quantum yield	mical processes. Laws of law, Lambert's law, Lambert- Jablonski diagram depicting e excited state, fluorescence, occesses (internal conversion,	10

4	Solutions and Colligative Properties: Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity and activity coefficient. Dilute solutions, colligative properties, Raoult's law, relative lowering of vapour pressure, molecular mass determination. Osmosis, law of osmotic pressure, determination of molecular mass from osmotic pressure. Elevation of boiling point and depression in freezing point, Numerical Problems.	10
5	Thermodynamics III: Statement and concept of residual entropy, third law of thermodynamics, unattainability of absolute zero, Nernst heat theorem. Evaluation of absolute entropy from heat capacity data, Numerical Problems	8
6	Radioactivity: Definition, nature of radioactivity, emission, types of radioactively, occurrence, Energetics and kinetics radioactivity, rates of radioactive transitions, Applications of radioactivity, Numerical Problems.	10

Books Recommended:

- i. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- iii. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- iv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- v. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- vi. Atkins, P. and de Paula, J. (2005). Physical Chemistry: 7th edition. Oxford University Press.
- vii. Moore, W.J. (1976). Physical Chemistry: 5th edition. Orient Longman Limited.
- viii. Fundamentals of Photochemistry, K.K. Rohtagi-Mukherji, Wiley-Eastern.
- viii. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication.
- ix. Introduction to Quantum Chemistry, A. K. Chandra, Tata McGraw Hill

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=CMYg3ElZwDY</u>
- 2. <u>https://www.youtube.com/watch?v=01dY_lLWdMA&t=4s</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc20_cy27/preview</u>
- 4. <u>https://onlinecourses.nptel.ac.in/noc21_cy20/preview</u>
- 5. <u>https://www.classcentral.com/course/swayam-chemistry-i-introduction-to-quantum-chemistry-and-molecular-spectroscopy-3981</u>
- 6. <u>https://www.classcentral.com/course/swayam-quantum-chemistry-of-atoms-and-molecules-19982</u>

- 7. https://nptel.ac.in/courses/104/108/104108057/
- 8. https://nptel.ac.in/courses/115/101/115101107/
- 9. https://nptel.ac.in/courses/104/101/104101124/
- 10. https://nptel.ac.in/courses/104/105/104105128/
- 11. https://www.classcentral.com/course/swayam-concepts-of-thermodynamics-13015
- 12. https://onlinecourses.nptel.ac.in/noc20_me20/preview
- 13. <u>https://www.careers360.com/university/indian-institute-of-technology-kharagpur/concepts-of-thermodynamics-certification-course</u>
- 14. https://www.coursera.org/learn/thermodynamics-intro
- 15. https://onlinecourses.nptel.ac.in/noc22_cy14/preview
- 16. https://onlinecourses.nptel.ac.in/noc20_cy22/preview
- 17. https://onlinecourses.nptel.ac.in/noc21_cy45/preview
- 18. https://onlinecourses.nptel.ac.in/noc21_ch48/preview

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests home assignments/ group discussions/ oral presentations	/ 15 marks
F	ne 10 marks

Course prerequisites: To study this course, a student must have passed Sem-VTheory papers.

Suggested equivalent online courses:

Further Suggestions:

Semester-VI Paper-II (Theory) Course Title: Analytical Chemistry

eourse Thies Amarytical Chemistry		
Programme/Class: Degree	Year: Third	Semester: Sixth
in Bachelor of Science		
	Paper	r-II Theory Subject: Chemistry
Course Code:	Course Title: Analytical Chemistry	

Course outcomes: After completion of this course, the students will be able to understand the chemistry of biomolecules. They will become acquainted in the field of data analysis. The new frontiers of chemistry such as nano-chemistry and green chemistry are the part of syllabi of this course which boost the knowledge of the students in these fields. The chemistry of industrially important inorganic materials such as cement, ceramics, glass and inorganic fertilizers has been incorporated in the course to enhance the skills and capability of the

students pursuing this course. The students will also able to understand the analytical techniques such as electro-gravimetric analysis, coulometric analysis, thermogravimetry, polarography and chromatography.

- ✓ Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
- ✓ Students will be able to function as a member of an interdisciplinary problem solving team.
- ✓ Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- ✓ Students will gain an understanding of how to determine the structure of organic molecules using UV, IR and NMR spectroscopic techniques.

Credits:4	Compulsory	
Max. Marks: 25+75	Min. Passing Marks	
Total Number of Hours $= 60$		

Unit	Contents	Number of Hours
1	General Biochemistry: Introduction to biomolecules, Enzymes; Definition, classification, role in physiology. General introduction to hormones. Nucleic acids; Nitrogen bases, purines, pyrimidines, nucleosides, nucleotides, structure of RNA and DNA molecule.	12
2	Data Analysis: Errors; Definition, types of errors, precision, accuracy, absolute, Significant Figures; significant figures in Arithmatics-addition, subtraction, multiplication and division, Mean and Standard deviation, Standard deviation and probability.	10
3	Fundamentals of Nanochemistry: Definition, brief history, classification, general approach of nano synthesis, general methods of characterization, general applications.	9
4	Basics of Green Chemistry: Introduction, role of green chemistry in sustainable development, principles of green chemistry.	8
5	Analytical Techniques: Basic concepts of electro-gravimetric and coulometric analysis. Thermogravimetric analysis. Voltametry; principle of polarography Chromatography: Introduction, Types, paper and column chromatography	9
6	Spectroscopy: Ultraviolet (UV) absorption spectroscopy- absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation, concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated enes and enones.	12

Infra-Red (IR) absorption spectroscopy- molecular vibrations, Hooke's Law, selection rules, intensity and position of IR bands, measurement of IR spectrum, finger print region, characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds. Nuclear magnetic resonance (NMR) spectroscopy; Proton magnetic resonance (¹H NMR) spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of ¹H NMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromoethane, ethyl acetate, toluene and acetophenone, Problems pertaining to the structure elucidation of simple organic compounds using UV, IR and ¹H NMR spectroscopic techniques

Books Recommended:

- i. Clark, J. H., and Macquarrie, D.J., Handbook of Green Chemistry and Technology, Wiley-Blackwell, 2002.
- ii. Anastas, P.T., and Williamson, T.C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, 1999.
- iii. Ozin, G.A., Arsenault, A.C. and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, 2008, 2nd edition.
- iv. P. H. Raven, Biology, Tata MacGraw Hill.
- v. P. Sheeler, Cell and Molecular Biology, John Wiley.
- vi. N. A. Campbell, Biology Pearson.
- vii. L. Styer, Biochemistry, Freeman & Co.
- viii. Outlines of biochemistry. Fourth edition (Conn, Eric E.; Stumpf, P. K.). Wiley India Pvt. Limited

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=qJMJUtqVUVw</u>
- 2. <u>https://www.youtube.com/watch?v=58pAYgrZjF0&t=26s</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc19_mm21/preview</u>
- 4. https://www.classcentral.com/course/swayam-introduction-to-data-analytics-3973
- 5. <u>https://onlinecourses.nptel.ac.in/noc21_cy26/preview</u>
- 6. <u>https://www.classcentral.com/course/swayam-biochemistry-5229</u>
- 7. <u>https://onlinecourses.nptel.ac.in/noc19_cy18/preview</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	

Overall	performance	throughout	the	05 marks
semester,	Discipline,	participation	in	
different activities) and Attendance				

Course prerequisites: To study this course, a student must have passed Sem-V Theory papers.

Suggested equivalent online courses: Further Suggestions:

Semester-VI, Paper-III (Practical) Course Title: Analytical Procedures-IV

Course Title: Analytical Procedures-IV Programme/Class: Vear: Third Semester: Sixth				
Programme/Class:	Year: Third	Semester: Sixui		
Certificate in				
Introductory/General				
Chemistry				
Paper-III Practical Subject: Chemistry				
Course Code:	Course Title: Analytical Procedures-IV			

Course outcomes: Upon completion of this course, the students will have the knowledge and skills to determine the heat of neutralization, solubility of organic compounds by titration method. They will be able to estimate different metal ions through gravimetric exercise. Spectroscopic and chromatographic exercise will train them to interpret the spectral data and chromatograms of organic compounds and will make them job ready for suitable industries.

	Credits:2		Compulsory	
Ν	Max. Marks: 12+38		Iin. Passing Marks:	
	Total Number	of Hours $= 60$		
Unit	Contents		Number of Hours	
1	Laboratory hazards and safety	precautions	6	
2	Physical exercise:Determination of solubility of organic compound (viz. oxalic acid) in water by titration method.Determination of Heat of neutralization.		18	
3	Spectroscopic exercise: Functional Group determination by UV and IR Spectroscopy; analysis of organic compounds including alcohols, phenols, carboxylic acids, carbonyl compounds, nitrogen containing compounds.		18	
4	Inorganic Exercise: Gravimetric analysis of any one or two metal ions; Ba ²⁺ , Fe ³⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ etc.		10	
5	Chromatographic	technique:	8	

Demonstrative Chromatography- paper chromatography (Analytical separation of	
 organic compounds- Amino acids/ dyes)	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	06 marks
Viva voce/Record and overall performance	06 marks

Course prerequisites: To study this course, a student must have opted Sem-VI Theory Paper-1 &2

Further Suggestions:

One exercise each from inorganic analysis (quantitative), Spectroscopy/ Chromatography and physical exercise shall be given in the examination.

Distribution of marks shall be as given below:

1.	Inorganic exercise	13
2.	Spectroscopy/ Chromatography	10
3.	Physical exercise	10
4.	Viva	05
5.	Home assignment/internal assessment, lab record and attendance	12

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 05(five) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Minor/Elective courses

Semester-I/II Paper-I (Theory) Course Title: Basics of Analytical Chemistry-I

Course Thie	Dusies of Thing flour On	enniser y 1
Programme/Class:	Year: First	Semester: First/Second
Certificate in Introductory		

Chemistry	
	Paper-ITheory Subject: Chemistry
Course Code:	Course Title: Basics of Analytical Chemistry-I

Course outcomes: Upon completion of this course, the students will able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments, at a level suitable to succeed at an entry-level position in chemical industry or a chemistry graduate program.

Credits:4		Elective	
Max. Marks: 25+75		Min. Passing Marks:	
	Total Number	of Hours = 60	
Unit	nit Contents		Number of Hours
1	Analytical approaches: Types of errors, precision & accuracy, absolute and relative uncertainty. Significant figures; significant figures in Arithmatics-addition, subtraction, multiplication and division. Mean and standard deviation.		12
2	2 Laboratory Apparatus: Laboratory burner; Bunsen burner, air flow regulation, obtaining warm gentle flame with the burner, hottest flame of the burner. Cutting and bending of glass tubing/glass rod, fire polishing of glass tubing or rod.		12
3	Steps in Chemical Analysis: Sampling, sample preparation, analysis, interpretation and preparation of report.		8
4	4 Use of Measuring Equipments: Pipette, burette, chemical balance, least count.		8
5 Chemical Concentration: Normality, morality, preparation of solution of defined normality/molarity of a given compound and from a given solution of different strength, percent composition, part per million (ppm), part per billion (ppb), calculations.		12	
6	Titration: Types of titrations and point aquivalance point		8

Recommended Texts:

- i. Nivaldo, J. and Tro, Ho Yu Au-Yeung, Introductory Chemistry, Pearson India Education, 2017, 5th edition.
- ii. Timberlake, K. C., and Timberlake, W., Basic Chemistry, Pearson India Education, 2017, 4th edition.
- iii. Pavia, D.L., Lampman, G. M., Kriz, G. S, and Engel, R.G., Microscale and Macroscale Techniques in the Organic Laboratory, Harcourt College Publishers, 2001, 1st edition.
- iv. Harris, D. C., Exploring Chemical Analysis, W. H. Freeman and Company, New York, 1993, 4th edition.
- v. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman and Company, New York, 2010, 8th edition.

Suggestive digital platforms web links

1. https://www.labster.com/chemistry-virtual-labs/

- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. http://chemcollective.org/vlabs

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evalu	n method	Marks
Mid-term exam/ in-class or on-line tests/		15 marks
home assignments/ group discussions/ oral presentations		
Overall perform semester, Discip different activities)	participation i	

Course prerequisites: To study this course, a student must have had the chemistry in class 12th

Suggested equivalent online courses:

Further Suggestions:

Semester-I/II Paper-II (Theory) Course Title: Basics of Analytical Chemistry-II

Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: First/Second
Paper-II Theory Subject: Chemistry		
Course Code:	Course Title: Basics of Analytical Chemistry-II	

Course outcomes: Upon completion of this course, the students will able to understand the analytical principles behind polarimetry, refractometry, distillation, crystallization and extraction. Further, the students will able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments, at a level suitable to succeed at an entry-level position in chemical industry or a chemistry graduate program.

Credits:4		Elective	
Max. Marks: 25+75 Min. Passing Marks:		Min. Passing Marks:	
	Total Number	of Hours $= 60$	
S. No.	Contents	Contact Hours/ Hours	

1	Physical Constants: Melting points, melting point theory, mixture melting point, packing of melting point tube, Determination of melting point; decomposition, discoloration, softening, shrinking and sublimation. Boiling point, determination of boiling point, use of boiling chips, calibration of thermometer.	12
2	Polarimetry and Refractometry: Polarimetry: Nature of polarized light, polarimeter, sample cells, operation of the polarimeter, optical purity. Refractometry: Refractometry; The refractive index, Refractometer.	12
3	Electromagnetic Radiation: Properties, absorption of light, transmittance, absorbance and Beer's Law. Spectrophotometer-Single beam and double beam instruments.	8
4	Distillation: Simple distillation, distillation theory, fractional distillation, difference between simple and fractional distillation, vapour-liquid composition diagram, Raoult's Law, types of fractionating columns, column efficiency, azeotropes.	10
5	Crystallization and Filtration: Filtration-Selection of suitable solvent/s, purification of compounds. Filtration-Gravity filtration, filter papers, vacuum filtration, aspirator, working of aspirator.	10
6	Solubility and Extraction: Solubility-Definition, predicting solubility behaviour, water as a solvent, organic solvents. Extraction-Theory, distribution coefficient, separation and drying agents.	8

Recommended Texts:

- i. Nivaldo, J. and Tro, Ho Yu Au-Yeung, Introductory Chemistry, Pearson India Education, 2017, 5th edition.
- ii. Timberlake, K. C., and Timberlake, W., Basic Chemistry, Pearson India Education, 2017, 4th edition.
- iii. Pavia, D.L., Lampman, G. M., Kriz, G. S, and Engel, R.G., Microscale and Macroscale Techniques in the Organic Laboratory, Harcourt College Publishers, 2001, 1st edition.
- iv. Harris, D. C., Exploring Chemical Analysis, W. H. Freeman and Company, New York, 1993, 4th edition.
- v. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman and Company, New York, 2010, 8th edition.

Suggestive digital platforms web links

- 1. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 2. <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- 3. <u>http://chemcollective.org/vlabs</u>
- 4. <u>https://onlinecourses.swayam2.ac.in/ugc19_bt16/preview</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities)	05 marks
Attendance	05 marks

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard

Suggested equivalent online courses:

Further Suggestions:

Semester-III/IV Paper-I (Theory)

Course Title: Chemistry of d-Block Elements, Quantum Chemistry and Spectroscopy

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third/Four
Paper-I Theory Subject: Chemistr		
Course Code:	Course Title: Chemistry of d-Block Elements, Quantum Chemistry and Spectroscopy	

Course outcomes: After completion of this course, the students will be able to understand the chemistry of d- and f-block elements, coordination compounds, quantum mechanical aspects of spectroscopy. The students will also able to understand principles and applications of spectroscopic techniques and photochemistry.

	Credits:4	Elective	
	Max. Marks: 25+75 Min. Passing Marks:		
	Total Number	of Hours = 60	
Unit	Unit Contents		
1	Transition Metal Elements: Introduction to transition metals. Transition and inner transition elements. Chemistry and trends of properties (Ability to form complexes, stability, variable oxidation states) of d-block and f-block elements. Applications.		12
2	Coordination Compounds: Intro system of nomenclature, VBT, CF		14

	compounds.	
3	Quantum Mechanical Approach: Quantum mechanical background behind molecular characterization. Quantum mechanical approach for molecular spectroscopy. Interaction between matter and electromagnetic radiation-wave-particle duality, particle in 1-D box, normalization of wave functions, Born-Oppenheimer approximation.	16
4	Spectroscopy: Principle and Applications. Microwave spectroscopy- Rotational and Vibrational spectra, Infrared Spectroscopy, Electronic spectroscopy,	10
5	Photochemistry: Introduction of photochemistry, Principle and Applications of photochemistry.	8

Books Recommended:

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- ix. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- x. Clark, J. H., and Macquarrie, D.J., Handbook of Green Chemistry and Technology, Wiley-Blackwell, 2002.
- xi. Anastas, P.T., and Williamson, T.C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, 1999.
- xii. Ozin, G.A., Arsenault, A.C. and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, 2008, 2nd edition.

Suggested online links:

1. <u>https://onlinecourses.nptel.ac.in/noc22_cy23/preview</u>

- 2. <u>https://www.swayamprabha.gov.in/asset/new_team/images/course_files/ch-15/S21%20QUANTUM%20MECHANICS%20AND%20MOLECULAR%20SPECT</u> ROSCOPY.pdf
- 3. <u>https://onlinecourses.nptel.ac.in/noc19_cy19/preview</u>
- 4. <u>https://www.classcentral.com/course/swayam-transition-metal-organometallic-chemistry-principles-to-applications-10047</u>
- 5. <u>https://www.swayamprabha.gov.in/index.php/program_data/flipMore/S13/15</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities)	05 marks
Attendance	05 marks

Course prerequisites: To study this course, a student must have had the chemistry in class 12th

Suggested equivalent online courses:

https://onlinecourses.swayam2.ac.in/cec21_ma16/preview

Further Suggestions:

Semester-III/IV

Paper-III (Theory)

Course Title: Coordination Chemistry, States of Matter and Chemical Kinetics

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third/Four	
	Paper-II Theory Subject: Chemistry		
Course Code:	Course Title: Coordination Chemistry, States of Matter and Chemical Kinetics		

Course outcomes: After completion of this course, the students will be able to understand the chemistry of d- and f-block elements, coordination compounds, quantum mechanical aspects of spectroscopy. The students will also able to understand principles and applications of spectroscopic techniques and photochemistry.

	Credits:4	Elective	
	Max. Marks: 25+75 Min. Passing Marks:		
	Total Number	of Hours = 60	
Unit	Contents		Number of Hours
1	Transition Metal Elements: Introduction to transition metals. 3d series -Chemistry and trends of properties (Electronic configuration, atomic and ionic radii, density, melting and boiling point, ability to form complexes, stability, variable oxidation states, colour, magnetic properties). Applications.		15
2	Coordination Chemistry: Introduction, Definition, terminology (ligand, coordination number, coordination sphere, complex ion etc.), VBT, CFT, crystal field splitting of octahedral, tetrahedral and square planar complexes, Jahn Teller distortion, Applications.		16
3	States of Matter: Gas, liquid and solid states. Kinetic theory of gases, properties of gas, liquid and solid, liquid crystals, crystal defects		13
4	4 Chemical Kinetics: Introduction, rate of a reaction, factors influencing the rate of a reaction–concentration, temperature, pressure, solvent, light, catalyst. Concentration dependence of rates of simple reaction, Molecularity, Order of reaction- zero order, first order, second order, pseudo-order.		16

Books Recommended:

- i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.
- ii. Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- iii. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- ix. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.

- x. Clark, J. H., and Macquarrie, D.J., Handbook of Green Chemistry and Technology, Wiley-Blackwell, 2002.
- xi. Anastas, P.T., and Williamson, T.C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, 1999.
- xii. Ozin, G.A., Arsenault, A.C. and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, 2008, 2nd edition.

Suggested online links:

- 1. <u>https://www.classcentral.com/course/swayam-transition-metal-organometallic-chemistry-principles-to-applications-10047</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc19_cy19/preview</u>
- 3. https://www.swayamprabha.gov.in/index.php/program_data/flipMore/S13/15
- 4. https://www.classcentral.com/course/swayam-chemistry-xi-part-i-17540
- 5. https://onlinecourses.nptel.ac.in/noc20_cy09/preview
- 6. <u>http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch12/trans.php</u>
- 7. http://www.chemistry.wustl.edu/~edudev/LabTutorials/naming_coord_comp.html
- 8. <u>http://chemed.chem.wisc.edu/chempaths/GenChem-Textbook/Coordination-Compounds-1052.html</u>
- 9. <u>http://www.chem.uwimona.edu.jm/courses/CFT.html</u>
- 10. http://scienceworld.wolfram.com/chemistry/CrystalFieldTheory.html
- 11. www.thermopedia.com/content/1232/
- 12. http://www.pci.tu-bs.de/aggericke/PC4e/Kap_IV/Sym-Op.html
- 13. www.highered.mcgraw-hill.com/sites/dl/free/0073402680/.../Chapter_13.pdf

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home	15 marks
assignments/ group discussions/ oral presentations	
Overall performance throughout the semester,	10 marks
Discipline, participation in different activities) and	
Attendance	

Course prerequisites: To study this course, a student must have had the chemistry in class 12^{th}

Suggested equivalent online courses:

https://onlinecourses.swayam2.ac.in/cec20_lb01/preview

Further Suggestions:

Semester-III/IV Paper-I (Theory) Course Title: Industrial Inorganic Chemistry

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third/Fourth
	Pape	r-I Theory Subject: Chemistry
Course Code:	Course Title: Ind	ustrial Inorganic Chemistry

Course outcomes: This paper provides detailed knowledge of synthesis of various class of industrially important inorganic compounds which will help the students to work in chemical-based industries. It relates and gives an analytical aptitude for synthesizing various industrially important compounds. This paper also provides a detailed knowledge on the applications of various inorganic materials.

Credits:3		Skill Development Course	
	Max. Marks: 25+75 Min. Passing Marks:		
	Total Number	of Hours = 45	1
Unit	Contents		Number of Hours
1	Chemicals and Industry: Importance of chemical industry, chemical, types of chemicals, water.		5
2	Inorganic Compounds I: Hydrogen, inorganic peroxide compounds, nitrogen compounds, chloramine, hydroxylamine, nitric acid, uses and importance. Phosphorus and its compounds.		8
3	Halogen Compounds: Nitrogen and potassium fertilizers		5
4	Metals and their Compounds: Lithium, sodium, potassium, magnesium, calcium, barium, chromium, manganese, silicon.		7
5	Inorganic Solids: Glass, zeolites, inorganic fibres, ceramics.		5
6	Carbon modifications: Glassy carbon, foamed carbon, carbon black, activated carbon.		5
7	Metallic Hard Materials: Carbides, borides, silicides.		5
	Inorganic pigments: Fillers, t luminescent, corrosion protection, m		5

Books Recommended:

- i. Buechel, K. H., Moretto, H-H., Woditsch, P., Industrial Inorganic Chemistry, Wiley-VCH, 2008, 2nd edition.
- ii. Swaddle, T. W., Inorganic Chemistry: An Industrial and Environmental Perspective, *Journal of Chemical Education*, 1997, 74 (12), 1399.

Suggested online links:

https://onlinecourses.swayam2.ac.in/cec20_lb01/preview

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/ group discussions/ oral presentations	15 marks
Overall performance throughout the semester, Discipline, participation in different activities)	05 marks
Attendance	05 marks

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard

Suggested equivalent online courses:

https://onlinecourses.swayam2.ac.in/cec20_lb01/preview https://nptel.ac.in/courses/104/105/104105103/

Further Suggestions:

NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for First Three Years of Higher Education

> PROPOSED STRUCTURE OF <u>UG - MATHEMATICS</u> SYLLABUS

> > 2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor , Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor , Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

SYLLABUS EXPERT COMMITTEE

S. No.	Name	Signature
	Prof. Anita Tomar, HoD,	
1	Department of Mathematics,	
	Sri Dev Suman Campus, Rishikesh	1
	Prof. Jaya Upreti, HoD,	11.
2	Department of Mathematics,	8200-
	S. S. J. Campus, Almora	0 400 12
	Dr. Shankar Kumar, Assistant Professor,	000
3	Department of Mathematics,	shar Mg
	Govt. P. G. College, Ranikhet.	
	Dr. Sundar Kumar Arya, Assistant Professor,	N Color
4	Department of Mathematics,	Record
	Govt. P. G. College, Pithoragarh.	12

SYLLABUS PREPRATION COMMITTEE

S. No.	Name	Signature
1	Prof. Jaya Upreti, HoD, Department of Mathematics, S. S. J. Campus, Almora	Stel 12
2	Prof. Anita Tomar, HoD, Department of Mathematics, Sri Dev Suman Campus, Rishikesh	Ja
3	Dr. Shankar Kumar, Assistant Professor, Department of Mathematics, Govt. P. G. College, Ranikhet.	Shan Mg
4	Dr. Sundar Kumar Arya, Assistant Professor, Department of Mathematics, Govt. P. G. College, Pithoragarh.	No. (Par
5	Dr. Anita Kumari, Assistant professor, Department of Mathematics, D. S. B. Campus, Almora.	Quita

	SEMESTER WISE TITLES OF THE PAPER IN UG MATHEMATICS COURSE									
YEAR	SEMESTER	COURSE CODE	PAPER TITLE	THEORY/ PRACTICAL	CREDIT					
CERTIFICATE COURSE IN BASIC MATHEMATICS										
	Ι	UGMAT101T	Matrices, Trigonometry and Differential Calculus	THEORY	4					
FIRST YEAR		UGMAT102P	Practical	PRACTICAL	2					
	п	UGMAT201T	Integral Calculus and Vector Analysis	THEORY	6					
		DIF	PLOMA IN MATHEMATICS		·					
SECOND		UGMAT301T	Group Theory and Analytical Geometry	THEORY	6					
YEAR	IV	UGMAT401T	Ordinary Differential Equations and Ring Theory	THEORY	6					
		DE	CGREE IN MATHEMATICS							
		UGMAT501T	Real Analysis, Functions of several variables and Partial Differential Equations	THEORY	5					
THIRD YEAR	V	UGMAT502T	 Any one of the following- (i) Mathematical Methods and Graph Theory (ii) Number Theory and Relativity (iii) Numerical Analysis and Operations Research 	THEORY	5					
	VI	UGMAT601T	Complex Analysis and Mechanics	THEORY	5					
	¥ I	UGMAT602T	Linear Algebra and Metric Spaces	THEORY	5					

						B.A./F	B.Sc. I			
PROGRAMME	YEAR	SEMESTER (15Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
CERTIFICATE COURSE IN BASIC MATHEMATICS	AR	SEMESTER – I	Paper-1	4	4	4x15=60	Matrices, Trigonometry and Differential Calculus Part A: Matrices Part B: Trigonometry Part C: Differential Calculus	Part A Unit I (8) Unit II (7) Unit III (5) Part B Unit IV (6) Unit V (6) Part C Unit VI (7) Unit VI (7) Unit VII (6) Unit VIII (8) Unit IX (7)	Mathematics in12 th	Engg. and Tech. (UG), Chemistry/ Biochemistry/ Life Sciences (UG), Economics (UG/PG), Commerce (UG), BBA/ BCA, B.Sc. (C.S.)
E COURSE]	FIRST YEAR		Paper-2 Practical	2	2 Lab Periods (2 Hours Each)	2x2x15=60	Practical (Practicals to be done using Mathematica/MATLA B / Maple /Scilab /Maxima etc.)		Mathematics in 12 th	Engg. and Tech. (UG), B.Sc. (C.S.)
CERTIFICAT		SEMESTER – II	Paper-1	6	6	15x6=90	Integral Calculus and Vector Analysis Part A: Integral Calculus Part B: Vector Analysis	Part A Unit I (12) Unit II (11) Unit III (12) Unit IV (11) Part B Unit V (11) Unit VI (12) Unit VII (12) Unit VII (12) Unit VII (11)	Mathematics in 12 th	Engg. and Tech. (UG), B.Sc. (C.S.)

PROPOSED STRUCTURE OF UG MATHEMATICS SYLLABUS AS PER NEP 2020 GUIDELINES GENERAL

OVERVIEW

						B.	A./B.Sc. II			
PROGRAMME	YEAR	SEMESTER (15 Weeks)	PAPER	CREDIT	PERIODS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
A IN ATICS	YEAR	SEMESTER – III	Paper-1	6	6	6x15=90	Group Theory and Analytical Geometry Part A: Group Theory Part B: Analytical Geometry	Part A Unit I (12) Unit II (20) Unit III (13) Part B Unit IV (11) Unit V (12) Unit VI (12) Unit VII (10)	Certificate Course in Basic Mathematics	Engg. and Tech. (UG), B.Sc. (C.S.)
DIPLOMA IN MATHEMATICS	SECOND YEAR	SEMESTER – IV	Paper-1	6	6	6x15=90	Ordinary Differential Equations and Ring Theory Part A: Ordinary Differential Equations Part B: Ring Theory	Part A Unit I (12) Unit II (11) Unit III (11) Unit IV (11) Part B Unit V (11) Unit VI (10) Unit VII (12) Unit VIII (12)	Certificate Course in Basic Mathematics	Economics (UG/PG), B.Sc. (C.S.) Engineering and Technology (UG), Science (Physics-UG)

						B.A./B	.Sc. III			
PROGRAMME	YEAR	SEMESTER (15Weeks)	PAPER	CREDIT	PERIO DS Per Week	PERIODS (HOURS) Per Semester	PAPER TITLE	UNIT (Periods Per Semester)	PREREQUISITE	ELECTIVE (For Other Faculty)
DEGREE IN MATHEMATICS	E IN MATHEMATICS THIRD YEAR SEMESTER-V	SEMESTER-V	Paper-1	5	5	5x15=75	Real Analysis & Functions of several variables and Partial Differential Equations Part A: Real Analysis Part B: Functions of several variables and Partial Differential Equations	Part A Unit I (8) Unit II (8) Unit III (7) Unit IV (7) Unit V (7) Part B Unit VI (8) Unit VII (8) Unit VIII (7) Unit IX (8) Unit X (7)	Diploma in Mathematics	Engg. And Tech.(UG), Economics (UG/PG), B.Sc.(C.S.)
DEGREE IN	THI	IWES	Paper-2	5	5	5x15= 75	(i) Mathematical Methods & Graph Theory Part A: Mathematical Methods Part B: Graph Theory	Part A Unit I (8) Unit II (10) Unit III (10) Unit IV (9) Part B Unit V (10) Unit VI (10) Unit VII (9) Unit VIII (9)	Diploma in Mathematics	Engg. and Tech.(UG), BCA, B.Sc.(C.S.)

DEGREE IN MATHEMATICS) YEAR	LHIKU YEAK SEMESTER-V	Paper-2	5	5	5x15= 75	 (ii) Number Theory & Relativity Part A: Number Theory Part B: Relativity 	Part A Unit I (16) Unit II (11) Unit III (12) Part B Unit IV (14) Unit V (12) Unit VI (10)	Diploma in Mathematics	Engg. and Tech. (UG), BCA, B.Sc. (C.S.)
DEGREE IN M	DEGREE IN MATHEN THIRD YEAR		Paper-2	5	5	5x15= 75	(iii) Numerical Analysis & Operations Research Part A: Numerical Analysis Part B: Operations Research	Part A Unit I (9) Unit II (9) Unit III (10) Unit IV (10) Unit V (9) Part B Unit VI (16) Unit VII (12)	Diploma in Mathematics	Engg. and Tech. (UG), Economics(U G/PG), BBA/BCA, B.Sc.(C.S.)
DEGREE IN MATHEMATICS	THIRD YEAR	SEMESTER-VI	Paper-1	5	5	5x15=75	Complex Analysis & Mechanics Part A: Complex Analysis Part B: Mechanics	Part A Unit I (9) Unit II (9) Unit III (10) Unit IV (9) Part B Unit V (10) Unit VI (10) Unit VI (10) Unit VII (9) Unit VIII (9)	Diploma in Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)

							Linear Algebra	Part A		
N N							&	Unit I (10)		
							Metric Spaces	Unit II (9)		
DEGREE IN MATHEMATICS	EAR	IV-3					Part A: Linear Algebra	Unit III (9)		Enga and
MAT	AD YE.	SEMESTER-VI	Paper-2	5	5	5x15=75	Part B: Metric Spaces	Unit IV (9)	Diploma in Mathematics	Engg. and Tech. (UG), B.Sc.(C.S.)
Z	THIRD	SEMI						Unit V (9)		
SEE		U 2						Part B		
EGI								Unit VI (6)		
								Unit VII (11)		
								Unit VIII (12)		
	•		Р	rogra	amme O	utcome/Pro	gramme Specific Oı	itcome	-	

Programme Outcome:

PO1: It is to give in-depth knowledge of geometry, algebra, calculus, differential equations and several other branches of pure and applied mathematics. This also leads to study the related areas such as computer science and other allied subjects. **PO2:** The skills and knowledge gained in this program will be helpful for modeling and solving of real life problems.

PO3: Students will become employable in various government and private sector.

PO4: The completing this programme develop enhanced quantitative skills and pursuing higher mathematics and research as well.

PO5: The completion of this programme will enable the learner to use appropriate digital programmes and softwares to solve various mathematical problems.

Programme Specific Outcome:

PSO1: Student should be able to think in a critical manner and develop problem solving skills.

PSO2: Students should be able to recall basic facts about mathematics and display knowledge of conventions such as notations, terminology etc.

PSO3: Students are able to formulate and develop mathematical arguments in a logical manner.

PSO4: Students are motivate and prepare for research studies in mathematics and related fields.

PSO5: Student should be able to apply their skills and knowledge in various fields of studies including, science, engineering, commerce and management etc.

B.A./B.Sc. I (MATHEMATICS)

Detailed Syllabus For

CERTIFICATE

COURSE IN BASIC MATHEMATICS

B.A. / B.Sc. I (SEMESTER-I) PAPER-I

Matrices, Trigonometry and Differential Calculus

Programm Class: B.A	e: Certificate	Voor: First Somostor: First									
Class. D.A			Subject: Mathematics								
Course Co	de: UGMAT101T		Course Title: Matrices, Trigonometry and Differential Calculus								
Course ou	tcomes:										
 CO1: The programme outcome is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for developing enhanced quantitative skills and pursuing higher mathematics and research as well. CO2: By the time students complete the course they will have wide ranging application of the subject and have the knowledge of matrices and basics of differentiation. CO3: The student will be able to sum the trigonometric series of real and complex numbers and separate the trigonometric function in form of A+iB. CO4: The main objective of the course is to equip the student with necessary analytic and technical skills. By applying the principles of differentiation, he learns to solve a variety of practical problems in science and engineering. CO5: The student is equipped with standard concepts and tools at an intermediate to advance level that will serve him well towards taking more advance level course in mathematics. 											
	Credits: 4		Core Compulsory / Elective								
]	Max. Marks: 25+75		Min. Passing Marks:								
		Total No	. of Lectures-Tutorials – Practical (in hours per week): L-T-P:4-0-0								
			Part-A								
			Matrices								
Unit			Topics	No. of Lectures							
I	Matrix introduction, matrix operations with their properties, symmetric, skew-symmetric, Hermitian and skew- Hermitian matrices, idempotent, nilpotent, involuntary, orthogonal and unitary matrices, singular and non-singular matrices, elementary operations on matrices, adjoint and inverse of a matrix, singular and non-singular matrices, negative integral powers of a non-singular matrix, Trace of a matrix.										
п	Rank of a matrix, elementary transformations of a matrix and invariance of rank through elementary transformations, normal form of a matrix, elementary matrices, rank of the sum and product of two matrices, inverse of a non-singular matrix through elementary row transformations, equivalence of matrices. 7										
ш	Solutions of a system homogeneous equat		ons, condition of consistency and nature of the general solution of a system of linear non-	5							

	Part-B Trigonometry						
Unit	Topics	No. of Lectures					
IV	Trigonometric or circular and hyperbolic function of complex variable together with their inverses, De Moivre's Theorem and its applications, Euler's theorem, relation between trigonometric and hyperbolic function, Exponential function of a complex variable, Logarithms of complex variable, Properties of logarithmic function, Separation into real and imaginary parts	6					
v	Gregory's series, Value of π by different series, Summation of Trigonometric series by C+iS method based on Arithmetic Progression, Geometric Progression, Logarithms and Binomial expansions, Summation of Trigonometric series by difference method.	6					

	Part-C						
	Differential Calculus						
Ur	iit Topics	No. of Lectures					
v	Functions of one variable, Limit of a function (ε-δ Definition), Continuity of a function, Properties of continuous functions, Intermediate value theorem, Classification of discontinuities, Differentiability of a function, Jacobians, maxima and minima of singe variable function, Rolle's Theorem, Mean value theorems and their geometrical interpretations, Applications of mean value theorems.	7					
V	VIISuccessive Differentiation, n th Differential coefficient of functions, Leibnitz Theorem, Taylor's Theorem, Maclaurin's Theorem, Taylor's and Maclaurin's series expansions.						
VI	Geometrical meaning of tangent, Definition and equation of Tangent, Tangent at origin, Angle of intersection of two curves, Definition and equation of Normal, Cartesian sub tangent and subnormal, Tangents and normals of polar curves, Angle between radius vector and tangent, Perpendicular from pole to tangent, Pedal equation of curve, Polar sub tangent and polar subnormal, Derivatives of arc (Cartesian and polar formula).						
Е	IX Curvature, Radius of curvature, Cartesian, Polar and pedal formula for radius of curvature, Tangential polar form, Centre of curvature, Asymptotes of algebraic curves, Methods of finding asymptotes, Parallel asymptotes, existence and classification of singular points, points of inflection.						
3. Sha Sugge 1. Mar 2. Rob 3. I. Mar 4. Sugge Sugge 5. H. 4 6. G.B 7. Sug This 6	hen Zhang, Matrix Theory- Basic Results and Techniques, Springer, 1999 nti Narayan, P.K. Mittal, A Textbook of Matrices, S Chand & Company, 2010 gested digital platform: NPTEL/SWAYAM/MOOCs sted Readings (PART-B Trigonometry): rgaret L. Lial, John Hornsby, David I. Schneider, Trigonometry, Addison-Wesley, 2001 sert Moyer,Frank Aryes, Schaum's Outline of trigonometry, 2012 I. Gelfand, Mark Saul, Trigonometry, Birkhäuser; 2001st edition (June 8, 2001) gested digital platform: NPTEL/SWAYAM/MOOCs sted Readings (Part- C Differential Calculus): J. Bartle & D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1999 I. Apostal, Calculus Vol. I, John Wiley & Sons Inc., 1974 Kumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2019 Balachandra Rao & C. K. Shantha, Differential Calculus, New Age Publication. 1992 Anton, I. Birens and S. Davis, Calculus, Pearson Education, 2010 gested digital platform: NPTEL/SWAYAM/MOOCs),					
2cono	Suggested Continuous Evaluation Methods: Max. Marks: 25						
S.N.		x. Marks					
1	Class Tests	10					
2	Online Quizzes/Objective Tests	5					
	Presentation	5					
3							
	Assignment	5					
3 4	Assignment rse perquisites: To study this course a student must have subject Mathematics in class 12 th .	5					
3 4 Cou	Assignment rse perquisites: To study this course a student must have subject Mathematics in class 12 th . gested equivalent online courses:	5					

B.A./ B.Sc. I (SEMESTER-I) Paper-II

Practical

Progr	amme: Certificate			
Class:	B.A./B.Sc.	Year: First	Semester: First	
		•	Subject: Mathematics	
Cours	e Code: UGMAT102P		Course Title: Practical	
	se outcomes: The main objective of the	course is too famil	iar the student with different computer software such as Mathematica /MATLAB /Maple /Scilab/M	Maxima etc.
CO2.	The students will be able	to compute various	operations on matrices by using different computer software such as Mathematica /MATLAB /Ma	aple
/Scilat	o/Maxima etc.			
CO2.		able to compute n th	derivative of various functions by using different computer software.	
	Credits:2		Core Compulsory/Elective	
	Max. Marks: 25+75		Min. Passing Marks:	
	Total No. o	f Lectures – Tuto	rials – Practical (in hours per week): L-T-P: 0-0-4	
Ur	nit		Topics	No. of
	Practical / Lab wo	rk to be performe	ed in Computer Lab.	Lectures
	 List of the practical to be done using R/Python/Mathematica/MATLAB/Maple/Scilab/Maxima etc. Introduction to the software and commands related to the topic. Computation of addition and subtraction of matrices, 			
		tation of multiplica tation of Trace and	tion of matrices. Transpose of Matrix.	
	1	tation of Rank of m		60
	6. Compu	tation of Inverse of	a Matrix.	
			nogeneous and non-homogeneous linear algebraic equations.	
			of e ^{ax} , trigonometric and hyperbolic functions. of algebraic and logarithmic functions.	
			of $e^{ax}\sin(bx+c)$, $e^{ax}\cos(bx+c)$.	
			aclaurin's expansions of the given functions.	
		2		
Sugge	ested Readings:			l
	ě	n elective by the	students of following subjects: Engg. and Tech. (UG), B.Sc. (C.S.)	
		:	Suggested Continuous Evaluation Methods: Max. Marks: 25	
S.N.			Assessment Type	Max. Marks
1	Class Tests			10
2	Online Quizzes/ Objec	tive Tests		5
3	Presentation			5
4	Assignment			5
Cou	rse prerequisites: To st	udy this course a	student must have subject Mathematics in class 12 th .	
Sugg	gested equivalent online	courses:		
Furt	her Suggestions:			

B.A. / B.Sc. I (SEMESTER-II) PAPER – I Integral calculus and Vector Analysis

Programme: Certificate Class: B.A./B.Sc.	Year: First	Semester: Second	
Subject: Mathematics			
Course Code: UGMAT201T Course Title: Integral calculus and Vector Analysis			
Course outcomes: CO1: The Programme outcome is to give foundation knowledge for the students to understand basics of mathematics including applied aspect for developing			

enhanced quantitative skills and pursuing higher mathematics and research as well. CO2: By the time students complete the course they will have wide ranging application of the subject and have the knowledge of surface area and volume of

shapes. CO3: The main objective of the course is to equip the student with necessary analytic and technical skills. By applying the principles of integral he learns to solve a variety of practical problems in science and engineering.

variety of practical problems in science and engineering. CO4: The student is equipped with standard concepts and tools at an intermediate to advance level that will serve him well towards taking more advance level course in mathematics.

course in mathematics.

Credits: 6	Core Compulsory/Elective
Max. Marks: 25+75	Min. Passing Marks:
To	tal No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 6-0-0

PART-A

integral Calculus	Integral	Calculus	
-------------------	----------	----------	--

integrai Calculus			
Unit	Topics	No of Lectures	
I	Integral as a limit of sum, Properties of Definite integrals, Fundamental theorem of integral calculus, Summation of series by integration, Infinite integrals, Differentiation and integration under the integral sign.	12	
П	Beta function, Properties and various forms, Gamma function, Recurrence formula and other relations, Relation between Beta and Gamma function, Evaluation of integrals using Beta and Gamma functions.	11	
ш	Double integrals, Repeated integrals, Evaluation of Double integrals, Double integral in polar coordinates, Change of variables, Change of order of integration in Double integrals, Triple integrals, Evaluation of Triple integrals, Drichlet's theorem and its Liovelle's extension.	12	
IV	Area bounded by curves (quadrature), Rectification (length of curves), Volumes and Surfaces of Solids of revolution.	11	

	PART- B				
	Vector Analysis				
Unit	Topics	No. of Lectures			
V	Triple product, Reciprocal vectors, Product of four vectors, General equation of a Plane, Normal and Intercept forms, Two sides of a plane, Length of perpendicular from a point to a plane, Angle between two planes, System of planes.	11			
VI	VI Direction Cosines and Direction ratios of a line, Projection on a straight line, Equation of a line, Symmetrical and unsymmetrical forms, Angle between a line and a plane, Coplanar lines, Lines of shortest distance, Length of perpendicular from a point to a line, Intersection of three planes, Transformation of coordinates.				
VII	Ordinary differentiation of vectors, Velocity and Acceleration, Differential operator-Del, Gradient, Divergence and Curl.	11			
VIII	Line, Surface and volume integrals, Simple applications of Gauss divergence theorem, Green's theorem and Stokes theorem (without proof).	10			

- Suggested Readings (Part- A Integral Calculus):
 1. T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc., 1974
 2. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2007
 3. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010
 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs

- Suggested Readings (Part- B Vector Analysis): 1. Murray R. Spiegel: Vector Analysis, Schaum's Outline Series, McGraw Hill.
 - N. Saran and S. N. Nigam: Introduction to Vector Analysis, Pothishala Pvt. Ltd. Allahabad. Suggested digital platform: NPTEL/SWAYAM/MOOCs 2.
 - 3.

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc. (C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25							
S.N. Assessment Type Max. N							
1	Class Tests	10					
2	2 Online Quizzes/ Objective Tests 5						
3	3 Presentation						
4	Assignment	5					
Course prerequisites: To study this course a student must have subject Mathematics in class 12 th .							
Suggested equivalent online courses:							
Further Suggestions:							

B.A./B.Sc. II (MATHEMATICS)

Detailed Syllabus For

DIPLOMA IN MATHEMATICS

B.A./B.Sc. II (SEMESTER-III) PAPER-I Group Theory and Analytical Geometry

Programm Class: B.A.	-	Year: Second	Semester: Third	
		I	Subject: Mathematics	
Course Cod	de: UGMAT301T		Course Title: Group Theory and Analytical Geometry	
Course out	tcomes:			
properties. CO2: This c CO3 The su CO4: On su higher cours	course will lead the s ibjects learn and visu iccessful completion se in geometry. iccessful completion	student to basic course alize the fundamental of the course students	odern algebra. Objective of this course is to introduce students to basic concepts of Group and the e in advanced mathematics and geometry. I ideas about coordinate geometry and learn to describe some of the surface by using analytical geo s have gained knowledge about regular geometrical figures and their properties. They have the fou s should have knowledge about higher different mathematical methods and will help him in going	ometry. ndation for
	Credits: 6 Core Compulsory / Elective			
N	Max. Marks: 25+75 Min. Passing Marks:			
	Total No. of Lectures - Tutorials-Practical (in hours per week): L-T-P:6-0-0			
			Part-A	
			Group Theory	
Unit			Topics	No. of Lectures
I	Cartesian product of Sets, Functions or mappings, Binary operations, Relation, Equivalence relations and partitions, Congruence Modulo n, Definition of a group with examples and simple properties, Abelian group, Finite and infinite group, Order of a finite group, General properties of groups, Composition table for finite groups			12
п	An Alternative set of postulates of groups, Subgroups, Permutations, Cyclic Permutations, Even and odd permutations, group of Permutations alternating group, Integral power of an element of a group, Order of an element of a group, Group homomorphism, Isomorphism on groups, the relation of isomorphism in the set of all groups Complexes and subgroup of a group, theorems on subgroups, Coset decomposition, Lagrange's theorem and its consequences, Cayley's theorem, Cyclic group, generating system of group.			20
Ш			13	

	Part-B	
	Analytical Geometry	
Ur	nit Topics	No. o Lectur
Г	V Polar Equation of conics, Polar coordinate system, Distance between two points, Polar equation of a Straight line, Polar equation circle, Polar equation of a conic, Chords, Tangent and Normal to a conic	n of a 11
١	 Curvilinear coordinates, Spherical and Cylindrical coordinates, Definition and equation of a sphere, Plane section of a sphere, Intersection of two spheres, Intersection of a sphere and a line, Power of a point, tangent plane, Plane of contact, Polar plane, Po Angle of Intersection of two spheres, Radical plane, Co-axial system of spheres. 	le, 12
v	VI Definition and equation of a cone, Vertex, Guiding curve, Generators, Three mutually perpendicular generators, Intersection of a with a cone, Tangent line and tangent plane, Reciprocal cone, Right circular cone, Definition and equation of a cylinder, Right circular, Enveloping cylinder.	
V	General equation of second degree, Tangent plane, Director sphere, Normal, Plane of contact, Polar plane, Conjugate plane and conjugate points	10
ugge	ested Readings (Part-A Group Theory):	I
	1. J. B. Fraleigh, A first course in Abstract Algebra, Addison-wiley, 2003	
	2. I. N. Herstein, Topics in Algebra, John Wiley & Sons, 2006	
	3. Thomas W Hungerford, Abstract Algebra-An Introduction, Sauders College Publishing, 1990	
	4. Joseph A Gallian, Contemporary Abstract Algebra, Brooks/Cole Cengage Learning, 2016	
	5. V. K. Khanna and S. K. Bhambri, A course in Abstract Algebra, Vikas Publishing House Pvt (Ltd), 2014.	
	6. Suggested digital platform: NPTEL/SWAYAM/MOOCs	
Sugge	ested Readings (Part-B Analytical Geometry):	
	1. Robert J.T Bell, An Elementary Treatise on Coordinate Geometry of three dimensions, Macmillan India Ltd., 1923	
	2. P.R. Vittal, Analytical Geometry 2d & 3D, Pearson, 2013	
	3. S.L. Loney, The Elements of Coordinate Geometry, McMillan and Company, London. 2018	
	4. Suggested digital platform: NPTEL/SWAYAM/MOOCs	
This c	course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc. (C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
S.N.	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Cou	urse prerequisites: To study this course, a student must have Certificate Course in Basic Mathematics.	<u>.</u>
Sugg	gested equivalent online courses:	
Furt	ther Suggestions:	

B.A./B.Sc. II (SEMESTER-IV) PAPER-I Ordinary Differential Equations and Ring Theory

Programm	e: Diploma		Semester: Fourth	
Class: B.A.	/B.Sc.	Year: Second	Semester: Fourth	
			Subject: Mathematics	
Course Coo	le: UGMAT401T		Course Title: Ordinary Differential Equations and Ring Theory	
Course out	comes:			
	objective of this cou applications.	urse is to familiarize t	the students with various methods of solving differential equations of first and second order ar	nd to have
	this course, a stude		ifferential equations and is able to model problems in nature using ordinary differential equation e more courses on wave equation, heat equation, diffusion equation, gas dynamics, nonlinear e	
CO3: Ring	theory is one of the l		ern algebra. Objective of this course is to introduce students to basic concepts of Ring, Integral dom lead the student to basic course in advanced mathematics and Algebra.	main and
	Credits: 6		Core Compulsory/Elective	
	Max. Marks: 2	5+75	Min. Passing Marks:	
		Total No. of	Lectures - Tutorials-Practical (in hours per week): L-T-P:6-0-0	
			Part-A	
			Ordinary Differential Equations	
Unit			Topics	No. of Lecture
I			Order and Degree of Differential Equations, Complete primitive (general solution, particular nee and uniqueness of the solution $dy/dx = f(x,y)$.	12
П	Integrating Factor	r, Linear Equation, Eq	first degree, Separation of variables, Homogeneous linear Equations, Exact Equations, uation of First order but not of first degree, Various methods of solution, Clairaut's form, onal Trajectory, Self-Orthogonal family of Curves.	11
ш			ant coefficients, Complementary function, Particular integral, Working rule for finding solution stant coefficients, Homogeneous linear equations or Cauchy-Euler equations.	11
IV	differential equation	ions, Total differential	fferential equations of the form $dx/P = dy/Q = dz/R$ where P, Q, R are functions of x, y, z. Exact equations, Series solutions of differential equations, Linear differential equations of second order bundary value problems.	11

	Part-B	
	Ring Theory	
Ur	it Topics	No. of Lectures
V	Rings, Various types of rings, Rings with unity, Rings without zero divisors, Properties of rings, Sub rings.	11
V	I Ideals, Quotient rings, Principal ideals, Maximal ideals, Prime ideals, Principal ideal domains, Characteristic of a ring.	10
V	Integral domain, Field, Skew field etc., Field of quotients of an integral domain, Embedding of an integral domain in a field, Factorization in an integral domain, Divisibility, Units, Associates, Prime and irreducible elements, Unique Factorisation Domain, Euclidean rings.	12
VI	Polynomials over a ring, Degree of a polynomial, Zero, Constant and monic polynomials, Equality of polynomials, Addition and multiplication of polynomials, Polynomial rings, Embedding of a ring R into R[x], Division algorithm, Euclidean algorithm, Units and associates in polynomials, Irreducible polynomials.	12
Sugge	 B. Rai, D.P. Choudhary & H. J. Freedman, A Course of Ordinary Differential Equations, Narosa, 2002 Ian N. Snedden, Elements of Partial Differential Equations, Dover Publication, 2013 L.E. Elsgolts, Differential Equation and Calculus of variations, University Press of the Pacific. 1970 M. D. Raisinghania, Ordinary and Partial Differential Equations, S Chand, 2018. Suggested digital platform: NPTEL/SWAYAM/MOOCs sted Readings (Part-B Ring Theory): J.B. Fraleigh, A first course in Abstract Algebra, Addison-wiley, 2003 I. N. Herstein, Topics in Algebra, John Wiley & Sons, 2006 Thomas W Hungerford, Abstract Algebra – An Introduction, Sauders College Publishing, 1990 Joseph A Gallian, Contemporary Abstract Algebra, Brooks/Cole Cengage Learning, 2016 Suggested digital platform: NPTEL/SWAYAM/MOOCs), Science
	Suggested Continuous Evaluation Methods: Max. Marks:25	
S.N.	Assessment Type Ma	x. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Cou	rse prerequisites: To study this course, a student must have Certificate Course in Basic Mathematics.	
Sug	gested equivalent online courses:	
Furt	ther Suggestions:	

B.A./B.Sc. III (MATHEMATICS) Detailed Syllabus For DEGREE IN MATHEMATICS

B.A./B.Sc. III (SEMESTER-V) PAPER-I Real Analysis, Functions of several variables and Partial Differential Equations

Programme:	Degree	Voor Third	Someeton Eifth	
Class: B.A./B.Sc.		Year: Third Semester: Fifth		
			Subject: Mathematics	
Course Code	e: UGMAT501T		Course Title: Real Analysis, Functions of several variables and Partial Differential Equations	
relevant field CO2: On suc CO3: The ma CO4: The co	ts will be able to known s. ccessful completion of ain objective of the c	of the course students should course is to equip the student ential equation intends to dev	velopments of real analysis which will prepare the students to take up further applications have knowledge about real analysis and will help him in going for higher studies and res with necessary analytic and technical skills. relop problem solving skills for solving various types of partial differential equation espe	earch.
	Credits: 5		Core Compulsory / Elective	
	Max. Marks: 25	5+75	Min. Passing Marks:	
		Total No. of Lecture	es-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			PART-A	
			Real Analysis	
Unit			Торіс	No. of Lecture
I		I Differentiability of functions of remainders.	ns: Continuity of functions, Uniform continuity, Differentiability, Taylor's theorem	8
II		emann integral-definition and gral calculus, Mean value the	d properties, integrability of continuous and monotonic functions, Fundamental orems of integral calculus.	8
Ш	negative terms,		on limit of sequences, Cauchy's convergence criterion, infinite series, series of non- for convergence, comparison test, Cauchy's root Test, ratio Test, Rabbe's, Logarithmic eibnitz's theorem.	7
IV			their convergence, Comparison test, Dritchlet's test, Absolute and uniform tegral depending on a parameter.	7

	PART-B	
	Functions of several variables and Partial Differential Equations	
Unit	Торіс	No. of Lectures
VI	Functions of several variables: Limit, continuity and differentiability of functions of several variables.	8

VII	Partial Derivatives: Partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, Jacobians, Chain rule, Euler's theorem on homogeneous functions, harmonic functions, Taylor's expansion of functions of several variables.	8
VIII	Maxima and Minima: Maxima and minima of functions of several variables – Lagrange's method of multipliers.	7
IX	Partial differential equations: Partial differential equations of first order, Charpit's method, Linear partial differential equations with constant coefficients. First-order linear, quasi-linear and non-linear PDE's using the method of characteristics: know how to obtain explicit solutions.	8
X	Partial differential equations of 2nd-order: Classification of 2nd-order linear equations in two independent variables: hyperbolic, parabolic and elliptic types (with examples).	7
 Suggested W. Flem R P Agr K Sanka M. D. R Suggested 	lik and Savita Arora, Mathematical Analysis , New Age International Pvt. (Ltd), 2012. ed digital platform: NPTEL/SWAYAM/MOOCs Readings (Part-B Functions of several variables and Partial Differential Equations): ing: Functions of several variables, Springer awal: Ordinary and Partial Differential Equations, Springer r Rao: Partial Differential Equations, Springer r Rao: Partial Differential Equations, PHI aisinghania, Ordinary and Partial Differential Equations, S Chand, 2018. ed digital platform: NPTEL/SWAYAM/MOOCs e can be opted as an elective by the students of following subjects: Engg. And Tech.(UG), Economics (UG/PG), B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
S. N.	Assessment Type Ma	x. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course pr	erequisites: To study this course, a student must have Diploma in Mathematics.	
Suggested	equivalent online courses:	
Further S	iggestions:	

B.A./B.Sc. III (SEMESTER-V) PAPER-II (i) Mathematical Methods and Graph Theory

Programme:	Degree	Year: Third	Semester: Fifth	
Class: B.A./I	3.Sc.	i cui i initu		
			Subject: Mathematics	
Course Code	: UGMAT502T		Course Title: Mathematical Methods and Graph Theory	
Course outco	omes:			
		ind the integral transform lem solving skill in the s	 h, Laplace transform, inverse Laplace transform and Fourier transform. The course in n udents. 	athematical
	* 1 1	Ų	nowledge of various types of graphs, their terminology and applications.	
			vill be able to understand the isomorphism and homomorphism of graphs. This course of iplines. The topics include path, circuits, adjacency matrix, tree, coloring. After success	
			ing, color problem, vertex coloring.	stur completion of
	Credits: 5		Core Compulsory / Elective	
]	Max. Marks: 25+75		Min. Passing Marks:	
		Total No. of Le	tures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			PART-A	
	I		Mathematical Methods	I
Unit			Торіс	No. of Lectures
I	Integral Transform	ms: Definition, Kernel.		8
п	Step and Dirac Del	ta Functions, First Shifti	theorem, Linearity property, Laplace transforms of elementary functions, Heaviside ng Theorem, Second Shifting Theorem, Initial-Value Theorem, Final-Value ives, integrals and Periodic functions.	10
ш			nce transforms of simple functions, Inverse Laplace transforms using partial tial and integro-differential equations using Laplace transforms. Dirichlet's	10
IV	Fourier Transforr Inverse Fourier tran		nsforms, Fourier sine and cosine transforms, Properties of Fourier Transforms,	9
			PART-B	
			Graph Theory	1
Unit			Торіс	No. of Lectures
V		lanar and connected gra	raphs, Simple graph, multi graph, graph terminology, representation of graphs, ohs, connected components in a graph, Euler graphs, Directed, Undirected, multi-	10
VI			graph, Hamiltonian path and circuits, Graph coloring, chromatics number, Incidence relation and degree of the graph.	10

VП	Operation of graph circuit, Path and circuits, Eulerian circuits, Hamiltonian path and cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, shortest path, Dijkstra's algorithm.	9
VIII	Tree, Binary and Spanning trees, Coloring, Color problems, Vertex coloring and important properties.	9
Suggested	Readings (Part-A Mathematical Methods):	
1. Murry R	Spiegal: Laplace Transform (SCHAUM Outline Series), McGraw-Hill.	
2. J. F. Jam	es: A student's guide to Fourier transforms, Cambridge University Press.	
3. Ronald 1	I. Bracewell: The Fourier transforms and its applications, Mcgraw Hill.	
4. J. H. Da	is: Methods of Applied Mathematics with a MATLAB Overview, Birkhäuser, Inc., Boston, MA, 2004.	
5. Suggeste	d digital platform: NPTEL/SWAYAM/MOOCs	
Suggested	Readings (Part-B Graph Theory):	
1. Narsingl	Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications, 2017.	
2. Douglas	B West, Introduction to Graph Theory, Pearson, 2018.	
3. Santanu	Saha Ray, Graph Theory with Algorithms and Its Applications: In Applied Science and Technology, Springer India, 2012.	
00	d digital platform: NPTEL/SWAYAM/MOOCs	
This cours	e can be opted as an elective by the students of following subjects: Engg. and Tech.(UG), BCA, B.Sc.(C.S.)	
	Suggested Continuous Evaluation Methods: Max. Marks: 25	
S. No	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course pr	requisites: To study this course, a student must have Diploma in Mathematics.	
Suggested	equivalent online courses:	

B.A./B.Sc. III (SEMESTER-V) PAPER-II (ii) Number Theory and Relativity

Programme:	Degree	Year: Third	Semester: Fifth	
Class: B.A./F	3.Sc.			
			Subject: Mathematics	
Course Code	e: UGMAT502T		Course Title: Number Theory and Relativity	
Course outco	omes:			
CO1: The stu	ident will be able to se	olve problems in eleme	ntary number theory and also apply elementary number theory to cryptography.	
CO2: Upon s	successful completion,	students will be able to	o describe the basic concepts of the theory of relativity.	
CO3: After S	Successful completion	of this course students	will be able to discuss postulates of the special theory of relativity and their consequences	
	Credits: 5		Core Compulsory / Elective	
Ν	Max. Marks: 25+75		Min. Passing Marks:	
		Total No. of Lec	ctures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0	
			PART-A	
			Number Theory	
Unit			Торіс	No. of Lectures
Ι	Prime Numbers, Un Law, Primitive roots		rem, Farey series, Irrational numbers, Congruences, Residues, Quadratic Reciprocity	16
П	Fermet's theorem, V	Vilson's theorem, Cont	inued fractions, Approximation of irrational of rationals, Hurwitz theorem.	11
ш	The fundamental the Quadratic fields, Th	eorem of arithmetic in l e arithmetic functions:	K(1), K(<i>i</i>), K(ρ), Diophantine equation $X^2 + Y^2 = Z^2$, $X^4 + Y^4 = Z^4$, $ax^2 + by^2 + cz^2 = 0$, d(n), σ (n), μ (n) and φ (<i>n</i>) including elementary result on their order and average order.	12
			PART-B	
			Relativity	
Unit			Торіс	No. of Lectures
IV	Postulates of special	l relativity, Lorentz trar our- dimensional space	rence, Michelson-Morley experiment, Doppler effect, Stellar aberration, Simultaneity, nsformation, Length contraction, Time dilation, Clock paradox, Addition of velocities time, Light cone, Mass variation, Velocity four vector, Momentum and force, Mass-	14
V		e tensor, Conditions for	coordinates, Curvature tensor and its algebraic properties, Bianchi's identities, r a flat space time, Displacement of space –time, Killing equations, Groups of motion,	12
VI			s of reference, Principal of equivalence, Weak field approximation of geodesic ce-time, Canonical coordinates, Schwarzschild solutions.	10

Suggested Readings (Part-A Number Theory):

1. G. H. Hardy and E. M. Wright: Introduction to the theory of numbers, Oxford University Press, 4th Edition.

2. D. M. Burton: Elementary Number Theory, 6th Edition, Tata McGraw Hill.

3. Thomas Koshy: Elementary Number Theory with Applications, Academic Press, 2nd Edition.

4. Kenneth H. Rosen: Elementary Number Theory and its Applications, Addison-Wesley Publishing Company, 1986.

5. Suggested digital platform: NPTEL/SWAYAM/MOOCs

Suggested Readings (Part-B Relativity):

1. D. F. Lawden: An Introduction to tensor calculus and relativity.

2. J. V. Narlikar: General relativity and cosmology.

3. R. H. Good: Basic concept of relativity, 1978.

4. A. S. Eddington: Mathematical theory of relativity, 1981.

5. Suggested digital platform: NPTEL/SWAYAM/MOOCs

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), BCA, B.Sc. (C.S.)

	Suggested Continuous Evaluation Methods: Max. Marks: 25	
S. No	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests	5
3	Presentation	5
4	Assignment	5
Course p	prerequisites: To study this course, a student must have Diploma in Mathematics.	
Suggeste	ed equivalent online courses:	
Further	Suggestions:	

B.A./B.Sc. III (SEMESTER-V) PAPER-II (iii) Numerical Analysis and Operations Research

Programm	ne: Degree				
Class: B.A	A./B.Sc.	Year: Third	Year: Third Semester: Fifth		
			Subject: Mathematics		
Course Co	ode: UGMAT502T		Course Title: Numerical Analysis and Operations Research		
Course ou	itcomes:	I			
CO1: Afte	er Successful completion of	this course the student wi	ill be able to perform error analysis for arithmetic operations.		
CO2: Upo	on successful completion, st	udents will be able to und	erstand the use of interpolation and curve fitting and finite differences.		
CO3: Afte	er Successful completion of	this course students will	be able to use some solution methods for solving the linear programming problems.		
	Credits: 5		Core Compulsory / Elective		
	Max. Marks: 25+75		Min. Passing Marks:		
		Total No. of Lectur	es-Tutorials-Practical (in hours per week): L-T-P: 5-0-0		
			PART-A		
	1		Numerical Analysis		
Unit			Торіс	No. of Lectures	
Ι	Errors in numerical Ca	Iculations: Absolute, Re	lative and Percentage errors, General Error, Error in series approximation.	9	
П	Solutions of Algebraic a iteration method.	and Transcendental Equ	nations: Bisection method, False position method, Newton-Raphson Method, Picard's	9	
ш		tion of inverse of a matrix	ear System of equations, Solutions of Linear Systems by direct method: Guassian x, Method of Factorization, Solutions of linear systems by iterative methods: Jacobi	10	
IV			omial interpolation, Finite differences, Differences of a polynomial, Newton's forward Gauss, Stirling, Bessel's and Everett's Formulae, Lagrange's Interpolation formula.	10	
V		on and integration: Nun on'1/3, Simpson's 3/8, and	nerical differentiation, Newton-Cotes Integration formula, Numerical integration by d Romberg Integration.	9	
	1		PART-B		
			Operations Research	No. of	
Unit			Торіс	No. of Lectures	
VI	feasible solutions, Formu	ulation of LPP, Graphical Simplex method, Big M	finition, characteristics, scope, objectives and limitations of OR, convex sets, Basic Method to solve LPP, General LPP, Canonical and Standard forms, Properties of Method and Two phase simplex method, Degeneracy in LPP, Duality in LPP, Duality	16	

VII	Transportation and assignment Models : Formulation of TP, Transportation Table, Finding initial basic feasible solution, Test of optimality, Degeneracy, MODI method, Stepping Stone method, Solutions of Assignment problems, Hungarian method.	12
Suggest	d Readings (Part-A Numerical Analysis):	
1. S. S. S	astry: Introductory Methods Numerical Analysis, Prentice- Hall of India.	
2. C.F. C	erald and P. O. Wheatley: Applied Numerical Analysis, Addison- Wesley, 1998.	
3. Konte	and Debour: Numerical Analysis.	
4. Sugge	sted digital platform: NPTEL/SWAYAM/MOOCs	
1. G. Hae 2. S. I. G 3. Kanti 4. Hamd 5. Sugge	ed Readings (Part-B Operations Research): fley, Linear Programming, Narosa Publishing House, 1995. ass, Linear Programming: Methods and Applications (4th edition) McGraw-Hill, New York, 1975. Swaroop, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand & Sons, New y A. Taha, Operations Research, Prentice-Hall of India, 1997. sted digital platform: NPTEL/SWAYAM/MOOCs rse can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), Economics(UG/PG), BBA/BCA, B.Sc.(C.S.) Suggested Continuous Evaluation Methods: Max. Marks: 25	
		<u> </u>
S. No		. Marks
1 2	Class Tests Online Quizzes/Objective Tests	10 5
3	Presentation	5
4	Assignment	5
	prerequisites: To study this course, a student must have Diploma in Mathematics.	
Suggeste	a convarent onnne courses:	

B.A./B.Sc. III (SEMESTER-VI) PAPER-I Complex Analysis and Mechanics

Programme: Degree Year: Third Semester: Sixth									
Class: B.A.	/B.Sc.	rear: miru							
	Subject: Mathematics								
Course Co	Course Code: UGMAT601T Course Title: Complex Analysis and Mechanics								
Course out	Course outcomes:								
student the	CO1: The course is aimed at exposing the students to foundations of analysis which will be useful in understanding various physical phenomena and gives the student the foundation in mathematics. CO2: Upon successful completion, students will be able to understand the complex variables, analytic functions, complex integration and residues.								
CO3: The o	object of the paper is to g	give students knowle	dge of basic mechanics such as simple harmonic motion, motion under other laws and forces						
CO4: The s industry.	CO4: The student, after completing the course can go for higher problems in mechanic such as hydrodynamics, this will be helpful in getting employment in industry.								
	Credits: 5 Core Compulsory / Elective								
Max. Marks: 25+75 Min. Passing Marks:									
	Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 5-0-0								
			PART-A						
			Complex Analysis						
Unit	t Topic								
I	Complex Variables: Functions of a complex variable, Limit, continuity and differentiability.								
п	Analytic functions: Analytic functions, Cauchy and Riemann equations, Harmonic functions.								
ш	III Complex Integration: Complex integrals, Cauchy's theorem, Cauchy's integral formula, Morera's Theorem, Liouville's Theorem, Taylor's series, Laurent's series, Poles and singularities.								
IV Residues: Residues, the Residue theorem, the principle part of a function, Evaluation of Improper real integrals.									

	PART-B Mechanics					
Unit	Торіс	No. of Lectures				
V	Rectilinear motion: Newton's Laws of Motion, velocity and acceleration, motion under constant acceleration, motion under inverse square law, rectilinear motion with variable acceleration, Simple Harmonic Motion.	10				

VI	Kinematics in two dimension: Angular velocity and angular acceleration, Components of velocity and acceleration along coordinate axes, Radial and transverse components of velocity and acceleration, tangential and normal components of velocity and acceleration.	10					
VII Motion in resisting medium, constrained motion and Central orbits: Terminal Velocity, Motion in resisting medium in a straight line, Motion on vertical circle, Cycloidal motion, Central Force, Central orbit, intrinsic equation, Pedal form, apse and apsidal distance.							
VIII	Statics: Coplanar Forces, Equilibrium of forces in three dimensions, Common catenary, Catenary of uniform strength, Virtual work.	9					
Suggested	l Readings (Part-A Complex Analysis):						
	nway: Functions of One Complex Variable, Narosa Publishing House, 1980.						
	ppson: Complex Variables, Oxford University Press.						
	hlfors: Complex Analysis, McGraw-Hill, 1977. son: Complex Function Theory, Hindustan Book Agency, Delhi, 1994						
	ed digital platform: NPTEL/SWAYAM/MOOCs						
2. M. Ray: 3. A. S. Ra 4. S. L. Lo	: A Textbook on Dynamics, S. Chand. : A Textbook on Statics, S. Chand. amsay: Dynamics, Cambridge University Press. oney: Dynamics of a particle and of rigid bodies, Cambridge University Press. ed digital platform: NPTEL/SWAYAM/MOOCs						
	se can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)						
	Suggested Continuous Evaluation Methods: Max. Marks: 25						
S. No	Assessment Type	Max. Marks					
1	Class Tests	10					
2	Online Quizzes/Objective Tests	5					
3	Presentation	5					
4	Assignment 5						
Course pi	rerequisites: To study this course, a student must have Diploma in Mathematics.						
Suggested	l equivalent online courses:						
	uggestions:						

B.A./B.Sc. III (SEMESTER-VI) PAPER-II Linear Algebra and Metric Spaces

Programm	Programme: Degree Year: Third Semester: Sixth									
Class: B.A	A./B.Sc.	Teat. Third	Seneseti Sian							
Subject: Mathematics										
Course Co	Course Code: UGMAT602T Course Title: Linear Algebra and Metric Spaces									
Course outcomes:										
CO1: Liner algebra is a basic course in almost all branches of science. The objective of this course is to introduce a student to the basics of linear algebra and some of its applications.										
CO2: After Successful completion of this course, students should be able to understand the concept of linear transformation.										
CO3: On successful completion of the course students should have knowledge about metric spaces, connectedness and compactness.										
Credits: 5 Core Compulsory / Elective										
	Max. Marks: 25+75 Min. Passing Marks:									
		Total No. of Lectur	es-Tutorials-Practical (in hours per week): L-T-P: 5-0-0							
			PART-A							
			Linear Algebra							
Unit	Topic N									
I	I Vector space: Introduction, subspaces, Linear combinations, linear spans, Sums and direct sums, Linear dependence and independence, Bases and dimensions, Dimensions and subspaces, Coordinates and change of bases.									
п	I Linear transformations: Linear transformations, rank and nullity, Linear operators, Algebra of linear transformations, Invertible linear 9									
ш	Matrix and linear transformation: Matrix of a linear transformation, Matrix of the sum and product of linear transformations, Change of basis, similarity of matrices.									
IV	Linear functional: Linear functional, Dual space and dual basis, Double dual space, Annihilators, Hyperspace, Transpose of a linear transformation.									
v	Eigen values and Eigen vectors: Eigen vectors and Eigen values of a matrix, product of characteristic roots of a matrix and basicVresults on characteristic roots, nature of the characteristic roots of Hermitian, skew-Hermitian, unitary and orthogonal matrices, characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix.9									
			PART-B							
			Metric Spaces							
Unit	Unit Topic No. of Lectures									

of a set, Bolzano-Weirstrass theorem, Complete metric space, Cauchy sequence, Convergent sequence, Bounded Sequence	11 12
VIII Continuity and Uniform continuity in a metric space. I Suggested Readings (Part-A Linear Algebra): 1 1. Hadley: Linear Algebra. 2 2. Hoffiman and Kunze: Linear Algebra, Prentice Hall of India, New Delhi, 1972. 3 3. H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. 4 4. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. 5 5. S. Lang: Linear Algebra, Springer. 6 6. Suggested digital platform: NPTEL/SWAYAM/MOOCs. 5 Suggested Readings (Part-B Metric Spaces): 1 1. Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. 2 2. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 3 3. S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 4 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs. 5	12
 Hadley: Linear Algebra. Hoffman and Kunze: Linear Algebra, Prentice Hall of India, New Delhi, 1972. H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. S. Lang: Linear Algebra, Springer. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. 	
 Hoffman and Kunze: Linear Algebra, Prentice Hall of India, New Delhi, 1972. H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. S. Lang: Linear Algebra, Springer. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. 	
 H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. S. Lang: Linear Algebra, Springer. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
 4. K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India. 5. S. Lang: Linear Algebra, Springer. 6. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 	
 5. S. Lang: Linear Algebra, Springer. 6. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 3. S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 	
 6. Suggested digital platform: NPTEL/SWAYAM/MOOCs. Suggested Readings (Part-B Metric Spaces): Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 	
 Suggested Readings (Part-B Metric Spaces): 1. Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. 2. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 3. S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
 Dhananjay Gopal, An Introduction to Metric Spaces, Chapman and Hall/CRC; 1st edition 2020. Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
 Satish Shirali & H. L. Vasudeva, Metric Spaces, Springer, First Indian Print. 2009 S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
 3. S. Kumaresan, Topology of Metric Spaces Narosa Publishing House, 2014 4. Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.) 	
4. Suggested digital platform: NPTEL/SWAYAM/MOOCs. This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc.(C.S.)	
Suggested Continuous Evaluation Methods: Max. Marks: 25	
S No Assessment Type	Max. Marks
1 Class Tests 1	10
2 Online Quizzes/Objective Tests	5
3 Presentation	5
4 Assignment 5	5
Course prerequisites: To study this course, a student must have Diploma in Mathematics.	-
Suggested equivalent online courses:	
Further Suggestions:	

NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for Five Years of Higher Education

> PROPOSED STRUCTURE OF <u>UG & PG PHYSICS</u> SYLLABUS

> > 2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor, Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

Expert Committee

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Sanjay Pant	Professor	Physics Department	Kumaun University, Nainital
2.	Dr. P.S. Bisht	Professor	Physics Department	S.S.J. University, Almora
3.	Dr. Ramesh Chandra	Professor	Physics Department	Kumaun University, Nainital
4.	Dr. Bimal Pande	Associate Professor	Physics Department	Kumaun University, Nainital
5.	Dr. Y.K. Sharma	Professor	Physics Department	S.S.D. University, Rishikesh
6.	Dr. Nandan Singh	Assistant Professor	Physics Department	S.S.J. University,Almora
7.	Dr. Kamal Devlal	Assistant Professor	Physics Department	Uttarakhand Open University Haldwani

Syllabus Preparation Committee

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Sanjay Pant	Professor & Head	Physics Department	Kumaun University, Nainital
2.	Dr. Shuchi Bisht	Professor	Physics Department	Kumaun University, Nainital
3.	Dr. Ramesh Chandra	Professor	Physics Department	Kumaun University,Nainital
4.	Dr. Alok Durgapal	Associate Professor	Physics Department	Kumaun University, Nainital
5.	Dr. Bimal Pande	Associate Professor	Physics Department	Kumaun University, Nainital
6.	Dr. Seema Pande	Associate Professor	Physics Department	Kumaun University, Nainital

			List of Papers in Six Semesters (B.Sc. Degree) Semester-wise Titles of the Papers in Physics		
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Certificate Course in Basic Physics Mechanics		
FIRST	Ι	Theory	(04)		
YEAR			Mechanical Properties of Matter	Practical	(02)
	II		Electricity and Magnetism	Theory	(04)
			Demonstrative Aspects of Electricity & Magnetism	Practical	(02)
			Diploma in Applied Physics		1
	III		Theory	(04)	
SECOND YEAR			Demonstrative Aspects of Thermal Properties of Matter	Practical	(02)
	IV		Geometrical Optics	Theory	(04)
			Demonstrative Aspects of Geometrical Optics	Practical	(02)
			Bachelor of Science	·	
	V		Physical Optics	Theory	(04)
THIRD			Demonstrative Aspects of Physical Optics	Practical	(02)
YEAR			Basic Electronics	Theory	(04)
	†		Demonstrative Aspects of Basic Electronics	Practical	(02)
	VI		Modern Physics	Theory	(04)
			Demonstrative Aspects of Modern Physics	Practical	(02)
			Analog and Digital Electronics	Theory	(04)
	i f		Demonstrative Aspects of Analog & Digital Circuits	Practical	(02)

Subject prerequisites:

- 1. For Semester I: 12th pass with subjects Physics, Chemistry & Mathematics
- 2. For Semester II: Passed Semester I with Physics
- 3. For Semester III: Passed Semester II with Certificate Course in Basic Physics
- 4. For Semester IV: Passed Semester III
- 5. For Semester V: Passed Semester IV with Diploma in Applied Physics
- 6. For Semester VI: Passed Semester V

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

PO 1	1. Competence in the methods and techniques of calculations using Mechanics.
	2. Students are expected to have hands-on experience to apply the theoretical knowledge to
	solve practical problems.
PO2	1. Students are expected to have deep understanding of electricity and magnetism.
	2. Student should be able to make basic electrical circuits and handle electrical instruments.
PO 3	1. Competence in the concepts of Thermodynamics.
	2. Students are expected to have hands on experience in Thermal Physics Experiments.
PO 4	1 Knowledge of different concepts in Geometrical Optics.
	2 Students are expected to have hands on experience of Experiments of Geometrical
	Optics
PO 5	1. Knowledge of basic concepts of optical instruments with their applications in technology
	2. Students are expected to have an insight in handling electronic instruments.
PO 6	1. Comprehensive knowledge of Analog & Digital Principles and Applications.
	2. Learn the integrated approach to analog electronic circuitry and digital electronics for
	R&D.

Programme specific outcomes (PSOs): UG I Year / Certificate course in Basic Physics

After completing this certificate course, the student should have

- Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
- Hands-on experience to apply the theoretical knowledge to solve practical problems of basic physical phenomena. He should be able to carry out experiments to understand the laws and concepts of Physics.
- An insight in understanding electrical circuits and in handling electrical instruments.

Programme specific outcomes (PSOs): UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

• Knowledge of different concepts in Thermodynamics, and Geometrical Optics.

• Knowledge of different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.

• A deeper insight in Ray Optics to understand the Physics of many optical instruments which are widely used in research and Industry, Optoelectronics, IT and communication devices, and in industrial instrumentation.

• Knowledge of basic concepts of optical instruments with their applications in technology.

	Programme specific outcomes (PSOs): UG III Year / Bachelor of Science
After cor	npleting this degree course, the student should have:
PSO 1	Knowledge of Mechanics and basic properties of matter. The course will empower him to apply his theoretical knowledge in various physical phenomena that occur in day to day life and he can use this scientific knowledge for the betterment of the society.
PSO2	Understanding of basic concepts related to Electricity and Magnetism. He should be proficienct in designing and handling different electrical circuits
PSO3	Expertise in different aspects of Thermal Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
PSO4	Proficient in the field of Optics which will increase his demand in research and industrial establishments engaged in activities involving optical instruments.
PSO5	<i>Basic knowledge in the field of Modern physics,</i> which have utmost importance at both undergraduate and graduate level.
PSO6	 Comprehensive knowledge of Analog & Digital Principles and Applications. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.

					Year wise				Physics (C ROJECT		ELECTI	VE				
									Physics	5)						
Type of Programme	Year	Sem	Paper I	Credit /hrs	Paper 2	Credit/ hrs	Paper 3	Credits /hrs	Paper 4	Credits /hrs	Elective Paper	Credits /hrs	Research Project	Credit/hrs		
Certificate	Ι	I	Mechanics (Theory)	4/60	Mechanical Properties of Matter (Practical)	2/60					EL1 (One	4/60				
		П	Electricity and Magnetism (Theory)	4/60	Demonstrative Aspects of Electricity& Magnetism (Practical)	2/60					from the list) (06)					
Diploma	П	III	Thermodynamics (Theory)	4/60	Demonstrative Aspects of Thermal Properties of Matter (Practical)	2/60					EL2 (One from	4/60				
		IV	Geometrical Optics (Theory)	4/60	Demonstrative Aspects of Geometrical Optics (Practical)	2/60					the list) (06)					
•-	III	v	Physical Optics (Theory)	4/60	Basic Electronics (Theory)	4/60	Demonstrative e Aspects of Physical Optics (Practical)		Demonstrative Aspects of Basic Electronics (Practical)	2/60			Industrial Training/Research Project	Qualifying		
Science		III		VI	Modern Physics (Theory)	4/60	Analog and Digital Electronics (Theory)	4/60	Demonstrativ e Aspects of Modern Physics (Practical)		Demonstrative Aspects of Analog & Digital Circuits (Practical)	2/60			Industrial Training/Research Project	Qualifying

Programma	Certificate Course in Basic Physics Year: I Semest	er: I
	Paper-	
Subject: Phy	ysics	
Course Coo	le: Course Title: Mechanics	
Course Outc	omes	
1. Understand	ing of Vector Algebra and Vector Calculus.	
2. Understand	the physical interpretation of gradient, divergence and curl.	
3. Study of gra	avitational field and potential and understanding of Kepler's laws of Planetary mo	tion.
4. Understand	ling of different frames of references and conservation laws.	
5. Understand different bodi	I the dynamics of rigid body and concept of moment of inertia. Study of moment des and its applications.	of inertia of
6. Study the predeformation a	properties of matter, response of the classical systems to external forces and t and its applications.	heir elast
7. Comprehe applications.	and the dynamics of Fluid and concept of viscosity and surface tension along with	its
Credits: 04	Core Compulsor	y
Max. Marks External Exa Internal Asso	am: 75	rks: 33
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Vectors Algebra Vector algebra. Scalar and vector products, scalar and vector triple products, Derivative of a vector with respect to a parameter, Del operator, gradient, divergence and curl, Gauss divergence theorem, Stokes curl theorem and Green's theorem, Line, surface and volume integral of a vector function.	
Unit II	Gravitation field and potential Gravitational field and potential, Gravitational potential energy, Gravitational field Intensity and potential due to a ring, a spherical shell, solid sphere and circular disc, gravitational self-energy, Inverse square law of forces, Kepler's laws of planetary motion.	

Unit III	Conservation Laws	
	Frames of reference, Concept of inertial and Non-inertial frames of references,	
	Work energy theorem, Conservative and non-Conservative forces, Linear	
	restoring force, Gradient of potential, Conservation of energy for the particle;	15
	Energy function, Concept of Centre of mass, Angular momentum and torque,	
	Laws of conservation of total energy, total linear momentum and total angular	
	momentum along with their examples.	
Unit IV	Dynamics of rigid body and Moment of Inertia	
	Translatory and Rotatory motion, Equation of motion for Rotating rigid body,	
	angular momentum vector and moment of inertia, Theorem of parallel and	10
	perpendicular axes, Moment of inertia of a cylinder, rod, lamina, ring, disc,	10
	spherical shell, solid sphere, kinetic energy of rotation, rolling along a slope,	
	Application to compound pendulum.	
Unit V	Properties of Matter	
	Basic concept, Elastic constants and their Interrelations, torsion of cylinder,	
	bending of beam, bending moment, Cantilever, shape of Girders/ rail tracks.	15
	Viscosity, Stokes's law, Posieuille's formula, Equation of continuity,	
	Bernoulli's theorem, Surface tension and its molecular interpretation.	
Suggested		
1.R. Resnic	k and D. Hilliday : Physics Vol-I	
2.Berkeley	Physics Course : Mechanics Vol-I	
•	man, R.B.Lightan and M.Sand : The Feynman Lectures in Physics	
	nur : Mechanics	
5.D.S. Math	nur : Elements of Properties of Matter	
6. Murray S	piegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector	
Analysis", I	McGraw Hill, 2017.	
7. J. C. Upa	dhaya: Mechanics, S. Chand	
Suggested	Online Link:	
1. MIT Ope	n Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
2. National	Programme on Technology Enhanced Learning (NPTEL),	
https://www	v.youtube.com/user/nptelhrd	
3. Swayam	Prabha - DTH Channel,	
https://www	r.swayamprabha.gov.in/index.php/program/current_he/8	
This cours	e can be opted as an elective by the students of following subjects: The course c	an
be opted as	an elective, which is open to all students.	
Suggested	Continuous Evaluation (25 Marks):	

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as

follows:

Class Test/Assignment- (25 marks) Course Prerequisites: Physics and Mathematics in 12th

rrogramme:	Certificate Course in Basic Physics	Year: I	Semester: I Practical	
Subject: Phys	ics (Practical)			
Course Code	Course Title: Mechanical Properties of Matter (Practical)			
to study and	omes: I physics has the most striking impact on the industry wherever the determine the mechanical properties. Int precision and perfection is achieved through Lab Experiments.		s are used	
Credits: 02		ore Compuls	sorv	
Max. Marks: Internal (Rec External Prac External Viva	ord File): 15 etical Exam: 20	lin. Passing N	Marks: 17	
Fotal No. of I	ectures-Tutorials-Practical (in hours per week): 0-0-4			
Unit	Торіс		No. of Lectures	
	Lab Experiment List	I		
	 To study the Motion of Spring and calculate (a) Spring g and (c) Modulus of rigidity. To determine the Moment of Inertia of a Flywheel. To determine g and velocity for a freely falling body u Timing Technique. To determine Coefficient of Viscosity of water by Ca Method (Poiseuille's method). 	using Digital	60	

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on attendance of student in Lab and presentation of practical in the record file. The marks shall be as follows **Record File (15 marks)**

PREREQUISITE: Opted / Passed Semester I, Theory Paper-1

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Togramme. Certificate Course in Dasie 1 hysics		Semester: I Vocational/ Minor	
	Subject: Physics		
Course Cod	e: Course Title: Basic Instrumentation Skills		
Credits: 03	redits: 03 Vocational/Mino (Experiments/ha training)		
Max. Marks: External Exa Internal Asse	m: 75	larks: 33	
Fotal No. of I Unit	ectures-Tutorials-Practical (in hours per week): 3-0-0 Topic	No. of Lectures	
Unit I	Basics of Measurement Instruments accuracy, precision, sensitivity, resolution, range, least count of different instruments etc. Errors in measurements and loading effects. Principle of Galvanometer, Voltmeter and Ammeter, Conversion of galvanometer into voltmeter and ammeter.		
Unit II	Multimeter Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity.		
Unit III	Unit III Digital Multimeter Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/frequency counter, time-base stability, accuracy and resolution.		
Unit IV			

Suggested Reading

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. Venugopal : Digital Circuits and Systems
- 4. P. Vingron, Shimon : Logic Circuit Design
- 5. Subrata Ghoshal : Digital Electronics.
- 6. S. Salivahanan& N. S.Kumar : Electronic Devices and Circuits, , 3rd Edn

Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
 SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8
 Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

CERTI	FICATE COURSE IN BASIC PHYSICS	
Programme:		Semester: I Paper-I
	Subject: Physics	-
Course Code	Course Title: Electricity and Magnetism	
Course Outco	omes:	
types of charg 2. Study of Ele	ng of Electric Field and Potential. Evaluation of Electric Field and Potential for di e distributions. ectric and Magnetic Fields in matter. Understand the concept of polarizability, Mag	
	Displacement Vector.	
•	ady and Varying electric currents.	
	ing of different aspects of alternating currents and its applications.	
	the Magnetostatics, Lorentz Force and Energy stored in magnetic Field. d the different aspects of Electromagnetic induction and its applications.	
. Comprehend	a me unrerent aspects of Electromagnetic induction and its applications.	
Credits: 04 Core Compulsory		Ý
Max. Marks: External Exa Internal Asse	m: 75	rks: 33
Unit	Торіс	No. of Lectures
Unit I	Electric field and potential	
	Coulomb law, Gauss' theory, its integral and differential forms, line integral of	
	Electric field, Electric field and potential due to an arbitrary charge	
	distribution. Electrostatic energy, energy stored in an Electric field. Electric	15
	field and potential due to long charged wire, Spherical shell, sphere, disc,	
Unit II	dipole. Electric and Magnetic Colds in Matter	
Unit II	Electric and Magnetic fields in Matter Moments of charge distributions, Polar and non-polar molecule, polarization	
	vector, electric displacement vector, three electric vectors, dielectric	
	susceptibility and permittivity, polarizability, Clausius-Mossotti relation	15
	Magnetization, magnetic susceptibility, diamagnetic, paramagnetic and	
	ferromagnetic substances, Hysteresis and B-H curve, Langevin's theories of	
	Diamagnetism and paramagnetism, Weiss theory of ferromagnetism.	
Unit III	Electric Currents (Steady and Varying)	
	Current density, Equation of Continuity, Ohm's law and electrical conductivity, LorentzDrude theory, Wiedmann-Frenz law, Kirchhoff's laws	10

	and their applications, Transient current, Growth and decay of D. C. in L - R and L - C circuits, charging and discharging of a capacitor through a resistance.	
Unit IV	Magnetostatics	
	Lorentz force, Bio-Savert's law, Ampere's law, Application of Biot-Savert law, magnetic field due steady current in a long straight wire, Interaction between two wires, field due a Helmholtz coil, solenoid and current loop, magnetic vector potential, permeability, Energy stored in Magnetic field.	10
Unit V	Electromagnetic Induction and Alternating Current Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance, admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f. source, series and parallel L-C-R circuits, resonance and sharpness, Quality factor, Power in A. C. circuits, Choke coil.	10

Suggested Reading

- 1. Edward M. Purcell : Electricity and Magnetism
- 2. J.H. Fewkes&J.Yarwood : Electricity & Magnetism, Vol. I
- 3. D C Tayal : Electricity and Magnetism ", Himalaya Publishing House Pvt. Ltd., 2019.
- 4. D.J.Griffiths : Introduction to Electrodynamics .
- 5. Lal and Ahmed : Electricity and Magnetism
- **6.** H. K. Malik and A.K. Singh "Engineering Physics", McGraw Hill Education (India) Private Limited, 2018.
- **7.** Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Course Prerequisites: Passed semester I, theory paper-1

CERT	TIFICATE COURSE IN BASIC PHYSICS		
Programme	e: Certificate Course in Basic Physics		Semester: II Practical
	Subject: Physics (Practical)		
Course Co	ode: Course Title: Demonstrative Aspects of Electricity & Magneti	sm (Practical)	
Course Out	comes:		
1 Even amina	antal physics has the most striking impact on the industry whenever t	- in strains outs	ana usad ta
-	ental physics has the most striking impact on the industry wherever t I determine the electric and magnetic properties.	ne instruments	are used to
-	ment precision and perfection is achieved through Lab Experiments.		
Credits: 02		re Compulsor	y
Max. Mark		n. Passing Ma	-
	ecord File): 15 actical Exam: 20	n. 1 assing wia	1 K3. 1 /
External Pr External Vi	actical Exam: 20 iva Voce : 15		
	f Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lectures
	Lab Experiment List		
	1. Frequency of A.C. Mains.		
	2. Calibration of Voltmeter by potentiometer.		
	3. Calibration of ammeter by potentiometer.		
	4. Specific resistance determination.		
	5. Conversion of a Galvanometer into a Voltmeter.		
	6. Conversion of a Galvanometer into Ammeter.		60
	7. Variation of magnetic field along the axis of a current carryi	ng circular coil	
	8. Comparison of capacities by Ballistic Galvanometer.		
	9. Determination of Ballistic Constant.		
	10. Electrochemical equivalent.		
	11. De Sauty's bridge- C1/ C2		
	12. R1/R2 by potentiometer.		
	13. Study of R-C, L-C-R circuits.		
	14. Determination of self inductance, mutual inductance.		
	15. Magnetic field determination by search coil and ballistic gal	vanometer.	

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash: Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester I

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

ogramme	: Certificate Course in Basic Physics Year: I Semes: Vocati	ter: II onal/Minor
	Subject: Physics	
Course Coo	Course Title: Electronics Instrumentation skills	
redits: 03	Vocational/Mino	or
Iax. Marks xternal Exa iternal Ass		arks: 33
	Lectures-Tutorials-Practical (in hours per week): 3-0-0	
Unit	Торіс	No. of Lecture
	Principles of voltage, measurement (block diagram only). Specifications of electronic Voltmeter, Multimeter and their significance. AC millivoltmeter: Ty of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac milli -voltmeter, specifications and their significance.	10
Unit II	Cathode Ray Oscilloscope Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), briet discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital baseilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.	
Unit III	Signal and pulse Generators Block diagram, explanation and specifications of low frequency signal generator and pulse generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.	
Unit IV		- 0

Suggested Reading

- 1. B L Theraja : Basic Electronics
- 2. M G Say : Performance and design of AC machines
- 3. Venugopal : Digital Circuits and Systems
- 4. P. Vingron, Shimon : Logic Circuit Design
- 5. Subrata Ghoshal : Digital Electronics
- 6. S. Salivahanan & N. S.Kumar : Electronic Devices and Circuits
- 7. V. K. Mehta: Basic Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Minor/Elective (04 Credit, One from the list El 1) Students having major in Physics will have to choose the elective/minor from sl. no. 1-4 only. Other students may have choice from sl. no. 1-6.

1. Statistical Physics

- 2. Numerical Methods
- 3. Computer Programming
- 4. Waves and Oscillations
- 5. Fundamental Mechanics
- 6. Basic Electricity and Magnetism

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Year: I Semester: I/II

Subject: Physics

Course Code:

Course Title: Statistical Physics

Credits: 04Minor/ElectiveMax. Marks: 100Min. Passing MarCxternal Exam: 75Min. Passing Marnternal Assessment: 25Min. Passing Mar		
		rks: 33
otal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Basic Concepts in Statistical Physics Basic postulates of Statistical Physics, Macro and Micro States, Phase Space, Density distribution in phase space, μ space representation and its division, Statistical average values, Condition of equilibrium, Stirling's Approximation, Entropy and Thermodynamic probability, Boltzmann entropy relation.	15
Unit II	Unit II Ensembles and Thermodynamic connections Ensembles, Micro -canonical, Canonical and Grand Canonical ensembles Statistical definition of temperature and interpretation of second law o thermodynamic, Pressure, Entropy and Chemical potential. Entropy of mixing and Gibb's paradox, Partition function and Physical significances of various statistical quantities.	
Unit III	Classical Statistics Maxwell-Boltzmann statistics and Distribution law, Energy distribution function, Maxwell Boltzmann law of velocity distribution (most probable velocity, average velocity, RMS velocity), Limitations of M-B statistics,	

	Elementary idea of quantum statistics.	
Unit IV	Bose-Einstein and Fermi-Dirac Statistics B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas, Bose derivation of Planck's law. Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.	15

- 1. B.B.Laud : Introductions to Statistical Mechanics
- 2. Bhattarjee J.K. : Statistical Physics (Allied Publishers)
- 3. F.Reif: Statistical Physics (Mc.Graw Hill)
- 4. Kamal Singh : Elements of Statistical Mechanics
- 5. K.Hung : Statistical Physics (Chapman and Hall/CRC)
- 6. J.P. Srivastava : Elements of Solid State Physics
- 7. K.E.Atkinson : Elementary Numerical Analysis
- 8. R.K. Pathria, B. Heinemann : Statistical Mechanics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. Swayam Prabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

 Programme: Certificate Course in Basic Physics
 Yea

 Subject: Physics
 Yea

Year: I Semester: I/II

Course Code:

Course Title: Numerical Methods

redits: 04 ax. Marks		rks: 33
ternal Exact ternal Ass	am: 75 essment: 25	
otal No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс	No. of Lecture
Unit I	Ordinary Differential Equations Brief review of ordinary differential equations, Exact equations, Equations reducible to exact equations, Equations of the first order and higher degrees, Clairaut's equation. Applications of ODEs in concerned engineering branch. Linear differential equations with constant co-efficient, Complimentary functions and particular integral, Method of variation of parameters, Equations	15
	reducible to linear equations with constant co-efficient (Cauchy's and Legendre's linear equations), Initial and Boundary value problems. Simultaneous linear equations with constant co-efficient, Applications of differential equations in concerned engineering branch.	
Unit II	Partial Differential Equations Formulation of Partial Differential Equations (PDE), Solution of PDE, Linear PDE of First Order (Lagrange's Linear Equation), Non-linear Equation of First Order (Standard Forms), Charpit's Method, Homogeneous Linear Equations with Constant Coefficients, Non-homogeneous Linear Equations. Applications of PDE: Method of separation of variables, Solution of one dimensional wave and heat equation and two dimensional Laplace's equation.	15
Unit III	Transforms Theory Laplace Transform: Laplace Transforms of standard functions and their properties, Inverse Laplace Transforms, General Properties of inverse Laplace transforms and Convolution Theorem, Laplace Transforms of periodic functions, Dirac-delta Function, Heaviside's Unit Function, Solution of ODE	

	and linear simultaneous differential equations using Laplace transforms. Fourier Transform: Fourier integral representation, Fourier sine, cosine and complex transform, Finite Fourier Transforms and their applications. Z – Transforms: Z–Transforms & its properties, inversion of Z – transform and applications of Z – transform	
Unit IV	Probability and Statistics Review of probability, Conditional probability and sampling theorems, Discrete and Continuous Probability Distribution, Probability Mass & Probability Density Functions, Distribution function, Discrete and Continuous probability distributions, Binomial, Poisson and Normal distributions.	

1. Advanced Engineering Mathematics by E. Kreyszig, John Wiley and Sons, NC, New York.

- 2. Differential Equations by S. L. Ross, John Wiley & Sons, New York.
- 3. An Introduction to Probability Theory & its Applications by W. Feller, Wiley.

4. Probability and Statistics for Engineers and Scientists by R.E. Walpole, S. L. Myers and K. Ye, Pearson.

5. Integral Transforms and Their Applications by Lokenath Dennath and Dambaru Bhatta, Chapman and Hall/CRC Press.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Year: I Semester: I/II

Subject: Physics

Course Code:

Course Title: Computer Programming

Credits: 04	Minor/Elective			
Aax. Marks: External Exa nternal Asse	m: 75	·ks: 33		
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0				
Unit	Торіс	No. of Lectures		
Unit I	Programming Fundamentals Introduction to computer, block diagram and organization of computer, number system and binary arithmetic, processing data, hardware, software, firmware, types of programming language -Machine language, Assembly level language, higher level language, source file, object file, translator-assembler, compiler, interpreter. Evolution and classification of programming languages.	15		
Unit II	 Programming Techniques Steps in program development, algorithm, flowchart, pseudo code. C Language: 'C' character set, literals, keywords, identifiers, data types and size, variable declaration, expression, labels, statements, formatted input output statements, types of operators, data type conversion, mixed mode arithmetics, control structures. 	15		
Unit III	Data Structures Storage classes, scope rules and visibility, arrays, pointers, dynamic storage allocation, structures and unions, self-referential structures. Relationship between pointers and arrays, dynamic arrays: Introduction to dynamic data structures linked lists, stack, and binary trees.	15		
Unit IV	Functions and File Handling 'C' functions, library functions, parameter passing, recursion, 'C' files, function for file handling, 'C' pre-processors and command line arguments, macros and conditional compiler directives.	15		

1. C Programming Language by Briain W. Kenigham and Dennis Ritchie, Prentice Hall of India.

2. Programming with C by Byron Gottfried, Tata McGraw Hill.

3. The Complete Reference C by Herbert Schildt, Tata McGraw Hill.

4. Let us C by Yashwant Kanetkar, BPB Publication.

5. A Structured Programming Approach in C by B.A. Forouzan and R.F. Gilberg, Cengage Learning.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code:

Course Title: Fundamental Mechanics

Credits: 04		Minor/Elective		
Max. Marks: External Exa Internal Asse	m: 75	Min. Passing Marks: 33		
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0				
Unit	Торіс		No. of Lectures	
Unit I	Vectors Algebra and Ordinary Differential Equations Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients.		15	
Unit II			15	
Unit III	Gravitation Newton's Law of Gravitation. Motion of a particle in a c (motion in a plane, angular momentum conservation). (statement only). Satellite in circular orbit and applications orbits. Basic idea of global positioning system (GPS). We Physiological effects on astronauts.	Kepler's Laws . Geosynchronous	15	
Unit IV	Elasticity Hooke's law - Stress-strain diagram - Elastic moduli-Relation constants - Poisson's Ratio-Expression for Poisson's ratio in constants - Work done in stretching and work done in the Twisting couple on a cylinder - Determination of Rigidity torsion – Torsional pendulum-Determination of Rigidity mode of inertia - q, η and σ by Searles method.	n terms of elastic wisting a wire – modulus by static	15	

- 1. Sears, Zemansky and Young : University Physics
- 2. Berkeley Physics Course : Volume-1 Mechanics
- 3. Resnick, Halliday & Walker Fundamentals of Physics
- 4. Basudeb Bhattacharya : Engineering Mechanics 2nd Edn
- 5. Ronald Lane Reese : University Physics

6. B.L. Flint and H.T. Worsnop : Advanced Practical Physics for

Students

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code:

Course Title: Waves and Oscillations

edits: 04	Minor/Elective	
x. Marks: 100 ernal Exam: 75 ernal Assessment: 25		
tal No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lecture
Unit I	Analysis of wave motion	
	Characteristics, Differential equation of a wave motion, principle of	15
	superposition, Interference, Beats, stationary waves, Energy of stationary	
	waves, Wave velocity and group velocity, Fourier theorem, Fourier analysis of	
	square, triangular and saw-tooth waves. Energy density of plane acoustic	
	waves, Acoustic intensity, Measurement of acoustic intensity - the dB scale,	
	Characteristics and loudness of Musical sound, Acoustic impedance,	
	Reflection and transmission of acoustic waves. Acoustics of buildings,	
	reverberation time, Sabine's formula, Principle of sonar system.	
Unit II	Ultrasonics	
	Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric	15
	effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic	
	waves, Determination of velocity of ultrasonic waves in liquid (Acoustic	
	grating method) . Application of Ultrasonics.	
Unit III	I	15
	Periodic motion, SHM in mechanical systems, Energy of Simple harmonic	15
	oscillator, Superposition of SHM(s), Oscillations of two masses connected by a	
	spring, Non-linear (An-harmonic) oscillator and its applications to simple	
	pendulum. Applications of Simple harmonic motion in compound pendulum,	
	Torsional pendulum and LC circuit, Composition of two SHM(s) of different	
	frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1	
In:4 IV	frequencies ratio	
Unit IV	Damped and Forced Harmonic Oscillations	15
	Damping force, Different cases for over, critical and under damping,	15
	Mechanical damped harmonic oscillators, Logarithmic decrement, Power	
	Dissipation, Relaxation time & Quality Factor.	

I	Forced oscillations, Mechanical driven harmonic oscillators, Transient and	
s	steady state behavior, Power absorption, phenomenon of resonance, amplitude	
r	resonance, velocity resonance, sharpness of resonance/Fidelity, Bandwidth and	
	quality factor.	

- 1. R. Resnick and D. Hilliday : Physics Vol-I
- 2. D.S. Mathur : Mechanics
- 3. Brijlal and Subrahmanyam : Waves and Oscillations
- 4. B.S.Semwal and M.S.Panwar : Wave Phenomena and Material

Science

- 5. Berkeley Physics Course : Mechanics Vol-I
- 6. R.K.Ghose : The mathematics of waves an Vibrations
- 7. D.P.Khandelwal : Oscillations and Waves
- 8. I.I.Pain : Physics of Vibration
- 9. A. P. French : Vibrations and Waves

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Subject: Physics

Course Code:

Course Title: Basic Electricity and Magnetism

redits: 04	Minor/Elective	
xternal Exa ternal Asso	ix. Marks: 100 ternal Exam: 75 ernal Assessment: 25 tal No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Topic	No. of Lectures
Unit I	Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere.	15
Unit II	Magnetism Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials.	15
Unit III		15
Unit IV	Maxwell's equations and Electromagnetic wave propagation Equation of continuity, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave and its transverse nature.	15

Suggested Reading

1. Edward M. Purcell : Electricity and Magnetism

2. J.H. Fewkes & J.Yarwood : Electricity & Magnetism, Vol. I

- **3.** D C Tayal : Electricity and Magnetism
- 4. Ronald Lane Reese : University Physics
- 5. D.J.Griffiths : Introduction to Electrodynamics, 3rd Edn.
- 6. B.L.Flint & H.T.Worsnop : Advanced Practical Physics for Students
- 7. M. Nelson and J. M. Ogborn : Advanced level Physics Practicals, 4th Ed
- 8. I.Prakash & Ramakrishna : A Text Book of Practical Physics, 11th Ed
- 9. S.Panigrahi & B.Mallick : Engineering Practical Physics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. Swayam Prabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS Semester: III **Programme:** Diploma in Applied Physics Year: II Paper-I **Subject:** Physics **Course Code:** Course Title: Thermodynamics **Course Outcomes:** 1. Recognize the difference between reversible and irreversible processes. 2. Understand First and Second Law of Thermodynamics and concept of Entropy. 3. Understand the physical significance of thermodynamical potentials. 4. Comprehend the kinetic model of gases w.r.t. various gas laws. 5. Study the implementations and limitations of fundamental radiation laws. Credits: 04 **Core Compulsory** Max. Marks: 100 Min. Passing Marks: 33 **External Exam: 75 Internal Assessment: 25** Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0 Unit No. of Topic Lectures Unit I **Basic concepts and First law of thermodynamics** 15 Thermodynamic Systems, Thermal equilibrium and Zeroth law of thermodynamics, Equation of state and First law of thermodynamics, Discussion of Heat and Work, Quasi-static Work; Reversible and Irreversible; Path Dependence; Heat Capacities Adiabatic Processes, Vander Wall equation, Distinction between Joule, Joule-Thompson and Adiabatic expansion of a gas. Unit II Second law of Thermodynamics and Entropy Insufficiency of first law of thermodynamics, Condition of Reversibility, 10 Carnot"s Engine and Carnot"s Cycle, Second law of thermodynamics, Carnot"s Theorem, Thermodynamic scale of temperature and its identity to perfect gas, scale of temperature. Entropy, Mathematical formulation of Second law of thermodynamics, Entropy of an ideal gas, T-S diagram and its applications, Evaluation of Entropy changes in simple cases, Third law of thermodynamics. Unit III Thermodynamic Relations Thermodynamic potentials, Maxwell's equation from thermodynamic potentials. 10 Some useful manipulations with partial derivatives (cooling in adiabatid processes and Adiabatic stretching of a wire), The Clausius–Clapeyron's equations, Triple point, Applications of Maxwell" sthermo dynamical relations.

Unit IV	Transport of Heat	
	Modes of heat transfer via Conduction, Convection and Radiation, Fourier"s law,	
	One dimensional steady state conduction, Heat conduction through plane.	
	Thermal conductivity and its experimental detection, Newton"s law of cooling,	15
	Dimensional analysis applied to forced and free convection. Black body	15
	radiation, Thermodynamics of radiations inside a hollow enclosure, Kirchoff's	
	Laws, Derivation of Stefan Boltzmann Law, Wein"s displacement law, Black	
	body spectrum formulaearly attempts, Raleigh Jean"s Law, Quantum theory of	
	Radiation, Planck"s formula for black body spectrum, Wien"s law, Radiation as	
	a photon gas.	
Unit V	Kinetic Theory of Gases	
	Kinetic theory of gases, Microscopic description of an Ideal gas, Degrees of	
	freedom, Law of Equipartition of Energy, Distribution law of velocities, Most	10
	probable speed, Average speed and root mean square velocity of molecules,	
	Pressure exerted by a perfect gas, Kinetic Interpretation of Temperature	
Suggest	ed Reading	
00	Loknathan : Thermodynamics, Heat and Statistical Physics	

- 2. Sharma and K.K. Sarkar : Thermodynamics, and Statistical Physics
- 3. Brijlal and Subrahmanyam : Heat and Thermodynamics
- 4. Garg, Bansal and Ghose : Thermal Physics, McGraw Hill, 2012.
- 5. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997.
- 6. Enrico Fermi, "Thermodynamics", Dover Publications, 1956.
- 7. MeghnadSaha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973
- 8. F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998.
- 9. Singhal and Prakash: Heat and Thermodynamics, Pragati Prakashan

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment (25 marks)

Course Prerequisites: Passed Certificate course in Basic Physics.

Programme:	Diploma in Applied Physics		Year: II	Semester: II Practical
	Subject: Physics (Practical)			
Course Cod	le: Course Title: Demonstrative Aspects of Thermal Physics (Practical)			
Course Outc	omes:			
1. Experimen	ntal physics has the most striking impact on the industry wher	ever the	instrumen	ts are used to
•	determine the thermal properties.			
2. Measureme	ent precision and perfection is achieved through Lab Experime	ents.		
Credits: 02		Core	Compuls	ory
Max. Marks: Internal (Reo External Pra External Viv	cord File): 15 ctical Exam: 20	Min. 1	Passing N	1arks:17
Total No. of 1	Lastures Tutorials Prestical (in hours non weak), 0.0.4	I		
Total No. of D Unit	Lectures-Tutorials-Practical (in hours per week): 0-0-4 Topic			No. of Lectures
				No. of Lectures
	Торіс	iethod.		
	Topic Lab Experiment List	ethod.		
	Topic Lab Experiment List 1. Thermal conductivity of a bad conductor by Lee's magnetic structure of a bad conductor by Lee's magnetic structure.	ethod.		
	Topic Lab Experiment List 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method.	nethod.		
	Topic Lab Experiment List 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method. 3. Stefan's law		d.	Lectures
	Topic Lab Experiment List 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method. 3. Stefan's law 4. Platinum resistance thermometer.		d.	
	Topic 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method. 3. Stefan's law 4. Platinum resistance thermometer. 5. Thermal conductivity of a good conductor by Searle 6. J by Callendar and Barnes method. 7. Random throw- statistical method.		d.	Lectures
	Topic 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method. 3. Stefan's law 4. Platinum resistance thermometer. 5. Thermal conductivity of a good conductor by Searle 6. J by Callendar and Barnes method. 7. Random throw- statistical method. 8. Newton's law of cooling, sp. heat of Kerosene oil.		d.	Lectures
	Topic 1. Thermal conductivity of a bad conductor by Lee's m 2. Mechanical equivalent of heat by Searle's method. 3. Stefan's law 4. Platinum resistance thermometer. 5. Thermal conductivity of a good conductor by Searle 6. J by Callendar and Barnes method. 7. Random throw- statistical method.	's metho		Lectures

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash: Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks) PREREQUISITE: Passed Certificate course in Basic Physics

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMA IN APPLIED PHYSICS	•		
ogramme:	Diploma in Applied Physics	Year: II	Semes Vocati	ter: III ional/Mino
	Subject: Physics		1	
ourse Cod	e: Course Title: Number System and Bo	olean Algel	bra	
edits: 03		Vocationa	al/Mino	or
x. Marks: ternal Exa	100	Min. Pass	sing Ma	arks: 33
	essment: 25			
	Lectures-Tutorials-Practical (in hours per week): 3-0-0			
				No of
Unit	Торіс			No. of Lectures
Unit Unit I	Topic Number systems, Decimal, Binary, Octal and Hexadecimal	number sys	stems,	
	-	-		
	Number systems, Decimal, Binary, Octal and Hexadecimal	-		Lectures
Unit I	Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, De conversion-shifting the place point Binary operations,	ecimal to I	Binary	Lectures
	Number systems, Decimal, Binary, Octal and HexadecimalBinary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations,Binary addition, Binary subtraction. Complement of	a number	Binary	Lectures
Unit I	Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations, Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep	a number	Binary	Lectures
Unit I Unit II	Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations, Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals.	a number presentation	Binary · (1"s · of a	Lectures
Unit I	Number systems, Decimal, Binary, Octal and HexadecimalBinary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations,Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals.Octal number system, Conversion of Binary to octal and	a number presentation	Binary · (1"s · of a pinary,	Lectures
Unit I Unit II	Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations, Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals. Octal number system, Conversion of Binary to octal and Advantages of octal number system, Hexadecimal number system, Hexadecimal number system, Rep Binary number system, Rep Binary to octal and Advantages of octal number system, Hexadecimal number system, Hexadecimal number system, Rep Binary number system, Hexadecimal number system, Hexad	a number presentation l octal to b system, Bin	Binary (1"s of a Dinary, ary to	Lectures
Unit I Unit II	Number systems, Decimal, Binary, Octal and HexadecimalBinary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations,Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals.Octal number system, Conversion of Binary to octal and	a number presentation l octal to b system, Bin	Binary (1"s of a Dinary, ary to	Lectures 10 10
Unit I Unit II Unit III	Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations, Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals. Octal number system, Conversion of Binary to octal and Advantages of octal number system, Hexadecimal number system, Hexadecimal number system, Rep Binary number system, Rep Binary to octal and Advantages of octal number system, Hexadecimal number system, Hexadecimal number system, Rep Binary number system, Hexadecimal number system, Hexad	a number presentation l octal to b system, Bin	Binary (1"s of a Dinary, ary to	Lectures 10 10
Unit I Unit II	 Number systems, Decimal, Binary, Octal and Hexadecimal Binary to decimal conversion, Double-Dadd method, Deconversion-shifting the place point Binary operations, Binary addition, Binary subtraction. Complement of complement and 2"s complement), Binary division, Rep Binary number as electrical signals. Octal number system, Conversion of Binary to octal and Advantages of octal number system, Hexadecimal number system, hexadecimal and vice-versa (Inter-conversion), BCD, GREY. 	a number presentation l octal to b system, Bin l, EXCESS	Binary (1"s of a binary, ary to -3	Lectures 10 10

Books Recommended :

1. M.K. Baagde, S.P.Singh and Kamal Singh ,Elements of Electronics ,(S. Chand and Co.)

2. B.L.Thereza, Basic Electronics, (S. Chand and Co.)

3. V.K.Mehta, Elements of Electronics, (S. Chand and Co.)

- 4. Brophy, Communication Electronics (McGraw-Hill Education)
- 5. R Boylested, Electronic Devices & Circuit theory (PHI)

Suggested Online Link: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS

Programme: *Diploma in Applied Physics*

Subject: Physics

Course Code: Course Title: Geometrical Optics

Course Outcomes:

- 1. Study of Fermat's Principle of Extremum Path and understand fundamental physics behind reflection and refraction of light.
- 2. Understand the theory of image formation by an optical system.
- 3. Study of different types of optical Aberrations and techniques for their reduction.
- 4. Study of different types of optical instruments used in industry and research

Credits: 04	Core Compulsory	
Max. Marks: External Exa Internal Asse Total No. of I	m: 75	ks: 33
Unit	Торіс	No. of Lectures
Unit I	Fermat's Principle and refraction (Spherical Surfaces) Fermat's principle of extremum path and its application to deduce laws of reflection and refraction Refraction at concave surface, Principal foci, Lateral and longitudinal magnifications, Aplanatic points of spherical surface.	
Unit II	Image Theory for Lens Systems Gauss's general theory of image formation Coaxial symmetrical system, Cardinal points of an optical system, Genera relationships, Thick and Thin lens, lens combinations, Newton's formula Coaxial lens system, Lagrange's equation of magnification, Refraction through a thick lens. Matrix theory of image formation.	15
Unit III	Optical Aberrations and dispersion Aberrations in images, Spherical aberration, Chromatic aberration, Condition of achromatism, Achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction, Spherical mirrors and Schmidt corrector plates, Theory of dispersion.	15
Unit IV	Associated Optical Instruments Nodal Slide, Eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, their comparison. Types of telescopes, Astronomica Reflecting and refracting telescope, Microscopes: principle and types, Spectrometer and its uses, Oil immersion objectives meniscus lens.	1

- 1. D.P. Khandelwaland : Optics and Atomic Physics
- 2. Jenkins and White : Fundamentals of Optics
- 3. A.K. Ghatak : Physical Optics
- 4. Brijlal and Subrahmanyam : Optics
- 5. K.D. Moltev : Optics
- 6. B. K. Mathur : Optics
- 7. B. D. Guenther : Modern Optics, Oxford Press
- 8. E. Hecht: Optics, Pearson.

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested equivalent online courses:

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Assignment (05 marks)

Class Test/Assignment (25 marks)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

ogramm	e: Diploma in Applied Physics	Year: II	Semester: IV Practical
	Subject: Physics (Practical)		Tactical
CourseCod	le: Course Title: Demonstrative Aspects of Geometrica (Practical)	l Optics	
Course Out	tcomes:		
study and	ental physics has the most striking impact on the industr l determine the optical properties. nent precision and perfection is achieved through Lab E	•	ments are used to
Credits: 02	,	Core Com	pulsory
Aax. Marks: 50 nternal (Record File): 15 External Practical Exam: 20 External Viva Voce : 15			ng Marks:17
fotal No. o	f Lectures-Tutorials-Practical (in hours per week): ()-0-4	
Unit	Торіс		No. of Lecture
	Lab Experimen	t List	I
	1. Nodal slide assembly, Location of cardinal points		
	 Nodal slide assembly, Location of cardinal points Newton's formula. 		
	1. Nodal slide assembly, Location of cardinal points		
	 Nodal slide assembly, Location of cardinal points Newton's formula. 		
	 Nodal slide assembly, Location of cardinal points Newton's formula. Dispersive power of prism. 		
	 Nodal slide assembly, Location of cardinal points Newton's formula. Dispersive power of prism. Resolving power of a telescope. 		60
	 Nodal slide assembly, Location of cardinal points Newton's formula. Dispersive power of prism. Resolving power of a telescope. To determine the Resolving Power of a Prism. 		60

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash, Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics and Semester III.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMA IN APPLI	IED PHYSICS		
Programme: <i>Diploma in Applied Physics</i> Year: II Semes Vocati				
	Subject:]	Physics		
CourseCode	rseCode: Course Title: Digital Electronics			
Credits: 03		Vocationa	l/Minor	
Max. Marks: 100 External Exam: 75 Internal Assessment: 25				
Total No. of L	ectures-Tutorials-Practical (in hours per we	eek): 3-0-0		
Unit	Topic I			
Unit I	Positive and Negative logic, Two input OR gate, Diode OR gate and transistor OR gate, Three input OR gate and its truth table, Exclusive OR gates, The AND gate, Diode AND gate and transistor AND gate, The NOT gate,			
Unit II	Bubbled gates, The NOR gate, The NAND gate, NAND and NOR as universal gates, The XNOR gate. Adders and subtractors, Half Adders, Full adders10			
Unit III	Logic Families, Saturated and Non- saturated Logic circuits, Characteristics of Logic Families, RTL Circuits, DTL Circuits, TTL Circuits.		stics of 10	
Unit IVBasic idea of Flip Flop, RS Latch, D-type flip flop and T-type Flip Flop . JK1Flip Flop and Master Slave Flip Flop.1		p.JK 15		

Books Recommended :

- 1. M.K. Baagde, S.P.Singh and Kamal Singh ,Elements of Electronics ,(S. Chand and Co.)
- 2. 2. B.L.Thereza, Basic Electronics, (S. Chand and Co.)
- 3. 3. V.K.Mehta, Elements of Electronics, (S. Chand and Co.)
- 4. 4. Brophy, Communication Electronics (McGraw-Hill Education)
- 5. 5. R Boylested, Electronic Devices & Circuit theory (PHI)

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Minor/Elective (04 Credit, One from the list El2)

Students having major in Physics will have to choose the elective/minor from sl. no. 1-5. Other students may have choice from sl. no. 1-6.

- 1. Solid State Physics
- 2. Elements of Modern Physics
- 3. Electromagnetic Theory
- 4. Optoelectronic Devices
- 5. Opto-Electronics and Laser Instrumentation
- 6. Classical Dynamics

DIPLOMA IN APPLIED PHYSICS

Programme: Dinloma in Annlied Physics

Programme: <i>Diplon</i>	na in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Solid State Physics		

redits: 04	dits: 04 Minor/Elective		
xternal Exa nternal Asso	x. Marks: 100 Gernal Exam: 75 Gernal Assessment: 25		
otal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс	No. of Lectures	
Unit I	Crystal Structure		
	Single crystals and polycrystalline forms, Lattice, Basis and crystal structure	15	
	Translational symmetry and basis vectors, Unit cell (primitive and non-		
	primitive), Two dimensional point groups and Bravais lattices, Miller indices,	,	
	SC, BCC and Sodium Chloride structures, closed packed structures (FCC and		
	HCP). Reciprocal lattice, X-rays diffraction, Bragg's law, Laue and powder		
	methods of X-rays diffraction.		
Unit II	Lattice Dynamics		
	Lattice vibrations, Monoatomic lattice, Phonons, Free electron theory of metals	15	
	limitations of Lorentz Drude theory, Somerfield theory, Specific heat and	5	
	paramagnetism of free electrons, Dulong and Petit's law, Departure of the law at	t	
	low temperatures, Einstein's theory of specific heat and its limitations, Debye's		
	theory of specific heat of solids.		

Unit III	Band theory of Solids	
	Motion of an electron in periodic potential (one dimensional), Results of Kronig-	15
	Penny model, Distinction between conductors, Semiconductors and Insulators,	
	Intrinsic and Extrinsic semiconductors, Effective mass of electron,	
	Concept of holes.	
Unit IV	Magnetic and Dielectric Properties of Matter	
	Dia-, Para-, Ferri- and Ferromagnetic Materials, Classical Langevin Theory of	
	dia- and Paramagnetic Domains. Quantum Mechanical Treatment of	
	Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and	
	Ferromagnetic Domains. Hysteresis and Energy Loss, Electric Susceptibility	
	Polarizability. Clausius Mosotti Equation. Classical Theory of Electric	15
	Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmein	
	relations. Langevin-Debye equation. Complex Dielectric Constant. Optical	
	Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO	
	modes.	

1. Dekker : Solid State Physics

2. C.kittel : Introduction to Solid State Physics

- 3. S.O.Pillai : Solid State Physics
- 4. Saxena, Gupta and Saxena : Fundamental of Solid State Physics
- 5. B.B.Laud : Introductions to Statistical
- 8. Leonid V. Azaroff : Introduction to Solids
- 9. N.W. Ashcroft and N.D. Mermin : Solid State Physics
- 10. H. Ibach and H. Luth : Solid-state Physics
- 6. B.L.Flint & H.T.Worsnop : Advanced Practical Physics for Students

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS

Programme: Diploma in Applied Physics

Year: II Semester: III/IV

Subject: Physics

Course Code:

Course Title: Elements of Modern Physics

Credits: 04 Minor/Elect		Minor/Electiv	e	
External Examination Examinati	ax. Marks: 100 kternal Exam: 75 ternal Assessment: 25		Marks: 33	
Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0				
Unit	Торіс		No. of Lectures	
Unit I	Quantum Mechanics and Bohr Atom Model Planck's quantum, Planck's constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Rutherford model, Bohr's model, quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.		15	
Unit II			15	
Unit III	Matter Waves and Schrödinger Equation Two slit interference experiment with photons, atoms & pa superposition principle as a consequence; Matter wave amplitude; Schrodinger equation for non-relativistic particles and Energy operators; stationary states; physical inter wavefunction, probabilities and normalization; Probability an current densities in one dimension.	es and wave s; Momentum rpretation of	15	
Unit IV	Motion in a Potential Well One dimensional infinitely rigid box- energy eiger eigenfunctions, normalization; Quantum dot as an examp mechanical tunnelling in one dimension - across a step potent across a rectangular potential barrier.	ole; Quantum	15	

- 1. Arthur Beiser : Concepts of Modern Physics
- 2. J.R. Taylor, C.D. Zafiratos : Modern Physics
- 3. Thomas A. Moore : Six Ideas that Shaped Physics: Particle Behave like Waves
- 4. Berkeley Physics Course : Vol.4 (Quantum Physics)
- 5. Serway, Moses, and Moyer : Modern Physics
- 6. G. Kaur and G.R. Pickrell : Modern Physics
- 7. B.L. Flint and H.T. Worsnop : Advanced Practical Physics for Students
- 8. Michael Nelson and Jon M. Ogborn : Advanced level Physics Practicals, , 4th Edition

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLC	MA IN APPLIED PHYSICS			
rogramme: Diploma in Applied Physics Year: II Se			Semester: III/I	
	Subj	ect: Physics		
Course Code: Course Title: Electromagnetic Theory				
redits: 04		Mine	or/Electi	ve
Iax. Marks: 100Min. Passing Mxternal Exam: 75nternal Assessment: 25			Marks: 25	
	Lectures-Tutorials-Practical (in hours p	er week): 4-0-0		
Unit	Торіс			No. of Lectures
Unit I	Maxwell's Equations Review of electrostatic and electromagn integral forms, Maxwell's equations Equations. Plane Waves in Dielectric Poynting Vector. Electromagnetic (EM) of Electromagnetic Field Energy Density	s. Displacement Curren c Media. Poynting The Energy Density. Physica	nt. Wav orem an	/e 1d
Unit II EM Wave Propagation in Unbounded Media Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves trefractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth.				
Unit III				
Unit IV	Polarization of Electromagnetic Wave Description of Linear, Circular and El Biaxial Crystals. Light Propagation in U	lliptical Polarization. Un		

Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary

Suggested Reading

1. D.J. Griffiths : Introduction to Electrodynamics

refractive indices.

2. M.N.O. Sadiku : Elements of Electromagnetics

3. T.L. Chow : Introduction to Electromagnetic Theory

4. M.A.W. Miah : Fundamentals of Electromagnetics

- 5. R.S. Kshetrimayun : Electromagnetic field Theory
- 6. Willian H. Hayt : Engineering Electromagnetic
- 7. J.A. Edminster : Electromagnetics, Schaum Series, 2006
- 8. B.L. Flint and H.T. Worsnop : Advanced Practical Physics for Students
- 9. Michael Nelson and J. M. Ogborn : Advanced level Physics Practicals

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS

Programme: Diploma in Applied Physics

Year: II Semester: III/IV

Subject: Physics

Course Code: Course Title: Optoelectronic Devices

Minor/Elective	
iternal Exam: 75	
	No. of
Горіс	No. of Lectures
Properties of semiconductors	
Electron and photon distribution: density of states, effective mass and band structure, effect of temperature and pressure on band gap, recombination processes.	15
Basics of semiconductor optics: Dual nature of light, band structure of various	
semiconductors, light absorption and emission, photoluminescence.	
electroluminescence, radioactive and non-radiative recombination, wave trains.	
Semiconductor light-emitting diodes and Semiconductor lasers	
Structure and types of LEDs and their characteristics, guided waves and optical modes, optical gain, confinement factor, internal and external efficiency, semiconductor heterojunctions, double hetero structure LEDs.	15
Semiconductor lasers: Spontaneous and stimulated emission, principles of a laser diode, threshold current, effect of temperature, design of an edge-emitting diode, emission spectrum of a laser diode, quantum wells, quantum-well laser diodes.	
Semiconductor light modulators	
Modulating light (direct modulation of laser diodes, electro-optic modulation, acousto-optic modulation), isolating light (magneto-optic isolators), inducing optical nonlinearity (frequency conversion, switching)	15
	100 m: 75 ssment: 25 Min. Passing Mark Lectures-Tutorials-Practical (in hours per week): 4-0-0 Topic Properties of semiconductors Electron and photon distribution: density of states, effective mass and band structure, effect of temperature and pressure on band gap, recombination processes. Basics of semiconductor optics: Dual nature of light, band structure of various semiconductors, light absorption and emission, photoluminescence, electroluminescence, radioactive and non-radiative recombination, wave trains. Semiconductor light-emitting diodes and Semiconductor lasers Structure and types of LEDs and their characteristics, guided waves and optical modes, optical gain, confinement factor, internal and external efficiency, semiconductor lasers: Spontaneous and stimulated emission, principles of a laser diode, threshold current, effect of temperature, design of an edge-emitting diodes. Semiconductor light modulators Modulating light (direct modulation of laser diodes, electro-optic modulation acousto-optic modulation), isolating light (magneto-optic isolators), inducing

Unit IV Semiconductor light detectors

I-V characteristics of a p-n diode under illumination, photovoltaic and photoconductive modes, load line, photocells and photodiodes, pi-n photodiodes, responsivity, noise and sensitivity, photodiode materials, electric circuits with photodiodes, solar cells.

15

Suggested Reading

- 1. Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh, McGraw Hill Companies, ISBN 0070576378
- 2. Optoelectronics, E. Rosencher and B. Vinter, Cambridge Univ. Press, ISBN 052177813.
- 3. Photonic Devices, J. Liu, Cambridge Univ. Press, ISBN 0521551951.
- 4. Semiconductor Optoelectronic Devices 2nd Edition", P. Bhattacharya, Prentice Hall, ISBN 0134956567.
- 5. Physics of Semiconductor Devices, by S. M. Size (2nd Edition, Wiley, New York, 1981)

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLO	MA IN APPLIED PHYSICS	
Programme:	Diploma in Applied PhysicsYear: II	Semester: III/IV
	Subject: Physics	
Course Cod	e: Course Title: Opto-Electronics and Laser Instrumentation	
Credits: 04	Minor/Electiv	ve
Max. Marks: External Exa Internal Asse	m: 75	Marks: 33
	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Introduction	
	Characteristics of optical radiation, luminescence, irradiance – Optical Sour Photo Detectors – Opto-couplers and their application in analog and of devices. Optical Fiber Fundamentals – modes, types of optical fibers – coupling – Fiber optic sensors for common industrial parameters – T pressure, temperature – IR sources and detectors – fiber optic gyroscope.	ligital fiber 15
Unit II	it IICharacteristics of LASERSEinstein's equations – population inversion two, three and four level system.Laser rate equation, properties – modes – Resonator configurations – Qswitching and mode locking, cavity dumping, single frequency operation –Types of Lasers. Applications – Lasers for measurement of distance and length,velocity, acceleration, atmospheric effects, pollutants.	
Unit III		
Unit IV	Holographic Interferometry and Applications Holography for non-destructive testing – medical applications – lasers and t interaction -surgery – dermatology.	tissue 15

- 1. Wilson and Hawkes, "Opto Electronics-An Introduction", Third Edition, Pearson Education, 1998.
- 2. John Ready, "Industrial Applications of Lasers", Second Edition, Academic Press, 1997.
- Bhattacharya P, "Semiconductor Optoelectronics", Second Edition, Pearson Education, 1998.
- 4. Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", First Edition, Prentice Hall of India Pvt. Limited, 2000.
- 5. R. P. Khare, "Fiber Optics and Optoelectronics", Oxford Press, 2004.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DIPLOMA IN APPLIED PHYSICS Programme: Diploma in Applied Physics Year: II Semester: III/IV Subject: Physics Course Code: Course Title: Classical Dynamics

edits: 04	Minor/Elective	Minor/Elective	
x. Marks: 100 ternal Exam: 75 ernal Assessment:25		g Marks: 25	
Unit	Lectures-Tutorials-Practical (in hours per week): 4-0-0 Topic	No. of Lecture	
Unit I	Classical Mechanics of Point Particles		
Unit I	Review of Newtonian Mechanics; Generalized coordinates and velocities.	1.5	
	Hamilton's principle, Lagrangian and the Euler-Lagrange equations, one-	15	
	dimensional Simple Harmonic Oscillations and falling body in uniform		
	gravity; applications to simple systems such as coupled oscillators Canonical		
	momenta & Hamiltonian. Hamilton's equations of motion. Applications:		
	Hamiltonian for a harmonic oscillator, particle in a central force field		
Unit II	Small Amplitude Oscillations		
0	Minima of potential energy and points of stable equilibrium, expansion of the	15	
	potential energy around a minimum, small amplitude oscillations about the		
	minimum, normal modes of oscillations example of N identical masses		
	connected in a linear fashion to $(N - 1)$ - identical springs.		
Unit III			
	Postulates of Special Theory of Relativity. Lorentz Transformations.	15	
	Minkowski space. The invariant interval, light cone and world lines. Space-	15	
	time diagrams. Time-dilation, length contraction and twin paradox. Four-		
	vectors: space-like, time-like and light-like. Four-velocity and acceleration		
	Metric and alternating tensors. Four-momentum and energy-momentum		
	relation. Doppler effect from a four-vector perspective. Concept of four-		
	force. Conservation of four-momentum. Relativistic kinematics. Application		
	to two-body decay of an unstable particle.		
Unit IV	Fluid Dynamics	1 =	
	Density and pressure in a fluid, an element of fluid and its velocity	15	
	continuity equation and mass conservation, stream-lined motion, laminar		
	flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes		

equation,	qualitative description of turbulence, Reynolds number, Basic
physics of	f fluids: Definition of a fluid- shear stress; Fluid, properties-
viscosity,	thermal conductivity, mass diffusivity, other fluid properties and
equation of	of state; Flow visualization - streamlines, pathlines, Streaklines

- 1. H. Goldstein : Classical Mechanics
- 2. N.C. Rana & P. S. Jog : Classical Mechanics
- 3. Landau and Lifshitz : Mechanics
- 4. Sommerfeld : Mechanics
- 5. Whittaker : Analytical Dynamics of Particles and Rigid Bodies
- 6. Raychaudhuri : Classical Mechanics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

DEGREE IN SCIENCE

Programme: *Degree in Science*

Year: III Semester: V

Paper-I

Subject: Physics

Course Code: Course Title: Physical Optics

Course Outcomes:

- 1. Study of Interference of light. Interference by division of wavefront and division of amplitude.
- 2. Understanding Diffraction of Light and concept of Zone Plate.
- 3. Understand the polarization of light..
- 4. Study of different types of associated optical instruments based on interference and diffraction of light which are widely used in industry and research.

Credits: 04	Core Compulsory
Max. Marks: 100 External Exam: 75	Min. Passing Marks: 33
Internal assessment: 25	

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

Unit	Торіс	No. of Lectures
Unit I	Interference The principle of superposition, Two slit interference, coherence,	
	Division of wave front and amplitude, Optical path retardations lateral shift of	15
	fringes, Fresnel biprism, Interference with multiple reflection, Thin films,	
	Application for precision measurements, Haidinger fringes, Fringes of equal	
	thickness and equal inclination.	
Unit II	Diffraction Fresnel's and Fraunhofer diffraction: Diffraction of single slit,	15
	Zone plates, intensity distribution, Resolution of image, Rayleigh criterion,	
	Resolving power of telescopes and microscopes, Diffraction due to 2-slits and	
	N-slits, Diffraction grating, Resolving power of grating and comparison with	
	resolving powers of prisms.	
Unit III	Polarization Plane polarized, Circular polarized and elliptically polarized light,	15
	Malus law, Brewster's law, Double reflection and uniaxial crystals,	
	Application of bi-refringence, Dichroism, Optical rotation, Rotation of plane of	
	polarization, Optical rotation in liquids and crystals, Polarimeter.	
Unit IV	Associated Optical Instruments Michelson intereferometer and its application	15
	for precise measurement of wavelength, Wavelength difference and width of	
	spectral lines, Twyman-Green interferometer, Tolansky fringes, Fabry-Perot	
	interferometer and Etalon.	

- 1. D.P. Khandelwaland : Optics and Atomic Physics
- 2. Jenkins and White : Fundamentals of Optics
- 3. A.K. Ghatak : Physical Optics
- 4. Brijlal and Subrahmanyam : Optics
- 5. K.D. Moltev : Optics
- 6. B. K. Mathur : Optics

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test /Assignment (25 marks)

Course Prerequisites: Passed Semester IV.

DEGREE IN	N SCINCE		
Programme:	Degree in Science	Year: III	Semester: V Practical
(Practical)	Subject: Physics		
Course Code	: Course Title: Demonstrative Aspects of Physical Optics (Practical)		
Course Outc			
study and	ntal physics has the most striking impact on the industry whereve determine the optical properties. ent precision and perfection is achieved through Lab Experiments		nts are used to
Credits: 02	(Core Compuls	ory
External Viv	cord File): 15 ctical Exam: 20 a Voce : 15	Ain. Passing N	Aarks: 17
	Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lectures
	Lab Experiment List		
	1. Biprism- determination of λ .		
	2. Newton's ring experiment- Determination of λ .		
	3. Determination of λ by a transmission grating.		
	4. Zone-plate experiment study of different orders.		
	5. Malus Law		60
	6. Spectrometer: Refractive index of the material of a prism us	ing	
	sodium light		
	7. Spectrometer: Dispersive power of the material of a prism us	sing	
	mercury light		
	8. Polarimeter: Specific rotation of sugar solution.		

Suggested Readings: 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash : Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual

Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DEGREE IN SCIENCE

Programme: *Degree in Science*

Year: III Semester: V Paper-II

Subject: Physics

Course Code: Course Title: Basic Electronics

Course Outcomes:

- 1. Study of different Network Theorems for simplifying complicated electronics circuits.
- 2. Study of Regulated Power Supply. Understand different types of Rectifiers, Filters and Voltage Regulator.
- 3. Study of different types of special diodes and their applications
- 4. Study of Transistors and their applications in different types of Amplifiers.

redits: 04	Core Compulsor	у
lax. Marks: xternal Exa iternal Exa otal No. of I	im: 75	rks: 33
Unit	Торіс	No. of Lectures
Unit I	Unit I Network Theorems Superposition Theorem, Constant voltage source and constant current source, Conversion of voltage source into current source, Thevenin's Theorem and procedure for finding thevenin equivalent circuit, Norton"s Theorem and procedure for finding Norton equivalent circuit, Maximum power transfer theorem, Applications of Network Theorems.	
Unit II		
Unit III		
Unit IV	Transistors Bipolar junction transistor, Transistor operation and its Biasing rule, Transistor currents, Transistor circuit configuration, Transistor characteristics in different	10

	configuration, cut-off and saturation points, Active region, Relation between transistor current in various configuration, h Parameters, General idea of FETs.	
Unit V	Transistor Amplifiers Single-stage transistor amplifiers, Common base (CB), Common emitter (CE) and, Common collector (CC) amplifier, Comparison of a amplifier configurations. Amplifier classification based on biasing condition, Power amplifiers (Class A, Push-Pull amplifier, Class B and Class C), Noise and Distortion in amplifiers, Multistage amplifier, Amplifier coupling, RC- coupled two stage amplifier and its frequency response, Advantage of RC coupling	15

Suggested Reading

- 1. M.K. Baagde, S.P. Singh and Kamal Singh : Elements of Electronics
- 2. B.L. Theraja : Basic Electronics
- 3. V.K. Mehta : Elements of Electronics
- 4. J.D. Ryder : Networks, Lines and Fields
- 5. J.D. Ryder : Electronic Fundamentals and Applications.
- 6. Millman and Halkias : Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester IV.

Programme	Programme: <i>Degree in Science</i> Year: III				
	Subject: Physics (Practical)		1		
Course Co	de: Course Title: Demonstrative Aspects of Basic Electronics (Practical)				
Course Out	comes:				
1. Experime	ental physics has the most striking impact on the industry whereve	r the instrume	nts are used to		
study the Ele	ectronics and its application in industry and research.				
2. Measuren	nent precision and perfection is achieved through Lab Experiments	5.			
Credits: 02		Core Compuls	sory		
Max. Mark		Min. Passing I	Marks:17		
Internal (R External Pr	ecord File): 15 actical Exam: 20				
External Vi	va Voce : 15				
I otal No. of	Lectures-Tutorials-Practical (in hours per week): 0-0-4				
Unit	Торіс		No. of Lectures		
	Lab Experiment List				
	1. To study characteristics of R-C coupled Amplifier with an	d without			
	feedback. 2. To study the characteristics of integrating and differentiating	airauit			
	3. To draw the characteristics of P-N junction diode.	, circuit.	60		
	4. To draw the characteristics of PNP and NPN junction transis	stor			
	5. Measurements of h-parameters of a transistor.				
	• • • • • • • • • • • • • • • • • • •				
	6. Study of different types of Rectifiers and Filters.				
	 6. Study of different types of Rectifiers and Filters. 7. Verification of Network theorems. 				
	7. Verification of Network theorems.				
	 7. Verification of Network theorems. 8. Child Langmuir law. 				
	 7. Verification of Network theorems. 8. Child Langmuir law. 9. Triode/ Tetrode/ Pentode characteristics and constants. 	rce voltage an	d		
	 7. Verification of Network theorems. 8. Child Langmuir law. 9. Triode/ Tetrode/ Pentode characteristics and constants. 10.Study of power supply (Ripple factor). 11. Study of Zener diode and regulation (taking different sour loads). 	ce voltage an	d		
	 7. Verification of Network theorems. 8. Child Langmuir law. 9. Triode/ Tetrode/ Pentode characteristics and constants. 10.Study of power supply (Ripple factor). 11. Study of Zener diode and regulation (taking different sour loads). 12. Phase measurement using a C.R.O. 	rce voltage an	d		
	 7. Verification of Network theorems. 8. Child Langmuir law. 9. Triode/ Tetrode/ Pentode characteristics and constants. 10.Study of power supply (Ripple factor). 11. Study of Zener diode and regulation (taking different sour loads). 12. Phase measurement using a C.R.O. 13. Study characteristics of T.C. Amplifier and B.W. 	rce voltage an	d		
	 7. Verification of Network theorems. 8. Child Langmuir law. 9. Triode/ Tetrode/ Pentode characteristics and constants. 10.Study of power supply (Ripple factor). 11. Study of Zener diode and regulation (taking different sour loads). 12. Phase measurement using a C.R.O. 	rce voltage an	d		

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash: Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", Pragat iPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual

Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as

follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DEGRE	CE IN SCIENCE	
Programme:		Semester: V Paper-I
	Subject: Physics	
Course Cod	e: Course Title: Modern Physics	
Course Outco	omes:	
1. Study	of different atomic models.	
•	of optical spectra and X- rays.	
•	tand the theory of LASERS which are widely used in industry and research.	
	tanding fundamentals of molecular spectroscopy.	
	of structure of atomic nucleus and radioactive decay.	
6. Study	of Elementary Particle Physics.	
Credits: 04	Core Compuls	ory
Max. Marks:	100 Min. Passing N	Aarks: 33
External Exa Internal asses	m: 75	
	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Atomic Models	15
	Thomson model, Rutherford model, Bohr model and spectra of hydrogen	
	atom, Fine structure, Bohr Magnetron, Larmor"s precession, Somerfield	
	model, Stern-Gerlach experiment, Vector atomic model, Space Quantization	
	and Spinning of an electron.	
Unit II	Optical Spectra and X-rays	10
	Optical spectra, Spectral notations, L-S, J-J coupling, Selection rules and	
	intensity rules, Explanation of fine structure of Sodium D line, Zeeman	
	effect, X-ray spectra (characteristics and continuous), Moseley"s law.	
Unit III	Lasers and Fundamentals of Molecular Spectroscopy	15
	Einstein A and B coefficients, Spatial and Temporal coherence, Optical	
	pumping, Population inversion, Laser action, Basic idea of LASER and	
	MASER, Ruby Laser and He-Ne laser, Some applications. Franck-Condon	
	Principle, Molecular spectra, Rotational, Vibration and Electronic spectra of	
	diatomic molecules, General features of electronic spectra, Luminescence,	
	Basics of Raman effect.	
Unit IV	Subatomic Physics	10
	Structure of atomic nucleus, nuclear properties (charge, mass, spin, shape),	
	nuclear binding energy, liquid drop model and semi-empirical mass	
	formula, Law's of radioactive decay, Basic idea of α , β and γ -decay.	

Unit V	Elementary Particle Physics	10
	Elementary Particles History and Classification of Elementary particles on	
	the basis of mass, Fundamental interactions, Lepton and Baryon number,	
	Conservation laws, Concept of Iso-spin, hypercharge and Strangeness, basic	
	idea of quarks	

Suggested Reading

- 1. H.S. Mani and Mehta : Introduction to Modern Physics
- 2. A. Beiser : Perspective of Modern Physics
- 3. Ahmad and Lal, : Modern Physics
- 4. B.V.N. Rao : Modern Physics
- 5. R. Murugeshan : Modern Physics
- 6. S.N. Ghosal : Nuclear Physics
- 7. C. B. Banwell : Fundamentals of Molecular Spectroscopy

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),
- https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester V.

Programme: <i>Degree in Science</i> Year: III Ser Pra				
	Subject: Physics (Practical)			
Course Code	: Course Title: Demonstrative Aspects of Modern Physic (Practical)	S		
Course Outco	mes:			
study and dete	al physics has the most striking impact on the industry where rmine the modern physics concepts. It precision and perfection is achieved through Lab Experime		uments are used	
Credits: 02		Core Con	pulsory	
External Viva	ord File): 15 tical Exam: 20 Voce : 15	Min. Pass	ing Marks:17	
	ectures-Tutorials-Practical (in hours per week): 0-0-4			
Unit	Торіс		No. of Lectures	
	Lab Experiment List			
	 Frank-Hertz Experiment. Determination of 'h' Planck's constant by Photoelectric e 'e/m' by Thomson method. 'e/m' Magnetron method. 'e/m' Helical method To determine the Planck's constant using LEDs of at locolours. 		60 ent	

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

3. Indu Prakash: Practical Physics

4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
 Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme: *Degree in Science*

Subject: Physics

Course Code: Course Title: Analog and Digital Electronics

Course Outcomes:

- 1. Study of feedback in amplifiers along with their advantages and disadvantages.
- 2. Study of different types of oscillators.
- 3. Understand the concepts of Boolean Algebra and various number systems
- 4. Study of logic gates and their applications.

Credits: 04	Core Co	ompulsory	
Max. Marks: 100Min. Passing NExternal Exam: 75Internal Assessment: 25Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0			
Unit	Торіс	No. of Lectures	
Unit I	Feedback Amplifiers Principle of feedback amplifiers, Classification of positive and n feedback, Advantage of negative feedback, gain stability, De distortion, Increased bandwidth, Forms of negative feedback, Positi feedback and its advantage.	creased	
Unit II	_		
Unit III	e	rations, er (1"s n of a Binary	

Unit IV	Boolean Algebra	10	
	Boolean algebra, Features of Boolean algebra, Laws of Boolean algebra,		
	Equivalent switching circuit, Demorgan"s theorems and duals		
Unit V	Logic Gates	10	
	Positive and Negative logic, Two input OR gate, Diode OR gate and		
	transistor OR gate, Three input OR gate and its truth table, Exclusive OR		
	gates, The AND gate, Diode AND gate and transistor AND gate, The NOT		
	gate, Bubbled gates, The NOR gate, The NAND gate, NAND and NOR as		
	universal gates, The XNOR gate, Adders and subtractors, Half Adders, Full		
	adders,		

Suggested Reading

- 1. M.K. Baagde, S.P. Singh and Kamal Singh : Elements of Electronics
- 2. B.L. Theraja : Basic Electronics
- 3. V.K. Mehta : Elements of Electronics
- 4. J.D. Ryder : Networks, Lines and Fields
- 5. J.D. Ryder : Electronic Fundamentals and Applications.
- 6. Millman and Halkias : Integrated Electronics

Suggested Online Link:

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/ Assignment (25 marks)

Course Prerequisites: Passed Semester V

DEGREE IN	N SCINCE		
Programme:	Degree in Science	Year: III	Semester: VI Practical
(Practical)	Subject: Physics	1	
Course Cod	e: Course Title: Demonstrative Aspects of Analog and Digita (Practical)	al Electronics	
Course Outco	omes:		
1. Experimen	tal physics has the most striking impact on the industry where	ver the instrum	ents are used to
-	tronics and its application in industry and research.		
2. Measureme	ent precision and perfection is achieved through Lab Experiment	nts.	
Credits: 02		Core Compu	lsory
Max. Marks:		Min. Passing	Marks: 17
Internal (Rec	cord File): 15 ctical Exam: 20		,
External Viv	a Voce : 15		
Total No. of]	Lectures-Tutorials-Practical (in hours per week): 0-0-4		
Unit	Торіс		No. of Lecture
	Lab Experiment List		
	1. Transistor Bias Stability		
	2. Comparative Study of CE, CB and CC amplifier		
	3. Clippers and Clampers		
	4. Study of Emitter Follower		
	5. Frequency response of single stage RC coupled amplifier		
	6. Frequency response of single stage Transformer coupled		
	amplifier		
	7. Effect of negative feedback on frequency response of RC		60
	coupled amplifier		00
	8. Study of Schmitt Trigger		
	9. Study of Hartley oscillator		
	10. Study of Wein Bridge oscillator		
	11. Study of Logic Gates		
	12. Verification of De Morgan's Theorem		
	13. Study of Half Adder		
	14. Study of Full Adder		

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.

- 3. Indu Prakash: Practical Physics
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74

2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester V.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DRAFT

National Education Policy-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for Post-Graduation.

PROPOSED STRUCTURE OF PG PHYSICS SYLLABUS

2021

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			Bachelor (Research in Physics)		
	VII		Mathematical Physics	Theory	(04)
			Classical Mechanics	Theory	(04)
			Quantum Mechanics	Theory	(04)
			Communication Electronics	Theory	(04)
H			Practical	Practical	(04)
FOURTH YEAR	VIII		Atomic and Molecular Spectra	Theory	(04)
FΟ Υ	VIII		Electrodynamics	Theory	(04)
			Elementary Particle Physics	Theory	(04)
	-		Condensed Matter Physics	Theory	(04)
			Elective Paper [one from the list] EL3**	Theory	(04)
			Practical	Practical	(04)
	1 1		Master in Physics	I	
	IX		Advanced Quantum Mechanics	Theory	(04)
			Plasma Physics	Theory	(04)
			Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I	Theory	(04)
			Advanced Electronics -II/Astrophysics -II/High Energy Physics-II/ Spectroscopy-II	Theory	(04)
~			Practical	Practical	(04)
EAF	Х		Nuclear Physics	Theory	(04)
Н			Digital Electronics and Computer Architecture	Theory	(04)
FIFTH YEAR			Advanced Electronics -III/Astrophysics -III/High Energy Physics-III/ Spectroscopy-III	Theory	(04)
			Advanced Electronics -IV/Astrophysics -IV/High Energy Physics-IV/ Spectroscopy-IV	Theory	(04)
			Practical	Practical	(02)

**Elective (04 Credit, one from the list EL3) To be opted in Semester VIII

- 1. **Statistical Physics**
- 2.
- 3.
- 4.
- Bio Physics Medical Physics Atmospheric Physics Nano Materials and Applications 5.

Subject prerequisites: Bachelor in Science with Physics as major subject.

Programme Outcomes (POs):

Students having Degree in *Bachelor (Research in Physics)* should have knowledge of advanced concepts of Physics and ability to apply this knowledge in various fields of academics, research and industry. They may pursue their future career in the field of academics, research and industry.

PO1 Competence in the methods and techniques of calculations using Mathematical Physics, Classical Mechanics, Quantum Mechanics and Communication Electronics. It will develope an analytical skill on an advanced level and will enable the student to have mathematical tools to solve complex problems of Physics. The Programme will motivate the student to know more about the matter, the universe and the recent developments in the field of science. The student will have adequate knowledge to work for the industry,, consultancy, education, and research

PO2 The students would gain substantial knowledge in various branches of physics. The programme will enable the student to explore more in the field of his/her choice like Advanced Electronics, Spectroscopy, Astrophysics and High energy Physics. The student will be well equipped with the knowledge required for different organizations, industry, R& D sector.

Programme specific outcomes (PSOs):

PG IST YEAR/ **Bachelor (Research in Physics)**

Bachelor (Research in Physics) programme provides the student the adequate knowledge, general competence, and analytical skills on an advanced level, needed in industry, consultancy, education, research, or in government organisation.

Programme specific outcomes (PSOs):

PG IIND YEAR/ Master in Physics

- The Master of Science in Physics programme provides student the adequate knowledge to use mathematical tools to solve complex physical problems and have the solid background and experience needed to analyze and solve advanced problems in physics.
- This course would enable the student to acquire scientific skills and the practical knowledge by performing experiments in general physics and electronics.
- The student would also get some research oriented experience by doing theoretical and experimental projects in the last semester under the supervision of faculty.
- The course as a whole opens up several career doors for the students interested in various areas of science and technology in private, public and government sectors. Students may get job opportunities in higher education, research organizations, physics consultancy and many others. Some of the institutions where physics students can start their career are: BARC, DRDO, NPTC, IISc, ISRO, ONGC, BHEL, PRL, NPL, SINP, VECC, IITs, NITs, IIPR etc.

								Subject	t: Pł	nysics			
Course/Ent ry-Exit Levels	Yea r	Sem	Paper I	Credi t/hrs	Paper II		Credit/ hrs	Paper III	Credi t/hrs	Paper IV	Credit /hrs	Paper V	Credit
		VII	Mathematica I Physics	4/60	Classical Mechanie		4/60	Quantum Mechanics	4/60	Communicati on Electronics	4/60		
Bachelor (Research in Physics)	IV	VII I	Atomic and Molecular Spectra	4/60	Electrody	ynamics	4/60	Elementary Particle Physics	4/60	Condensed Matter Physics	4/60	Elective Paper [one from the list] EL3**	4/60
	V	IX	Advanced Quantum Mechanics	4/60	Plasma Physics		4/60	Advanced Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy- I		Advanced Electronics - II/Astrophysi cs -II/High Energy Physics-II/ Spectroscopy -II	4/60		
Master in Physics	v	X	Nuclear Physics	4/60	Digital Electroni Compute Architect	er	4/60	Advanced Electronics - III/Astrophysi cs -III/High Energy Physics-III/ Spectroscopy- III		Advanced Electronics - IV/Astrophys ics -IV/High Energy Physics-IV/ Spectroscopy -IV	4/60		
Comments													
								Internal Asse	ssmen	t and Extern	alAsse	ssment	
		In	Internal Assessment Mark			-			Assessment	<u>ai 11550</u>		larks	

DETAILED SYLLABUS FOR BACHELOR (RESEARCH IN PHYSICS) OR P.G FIRST YEAR

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: R	ACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER
Trogramme. D	ACHELOK (RESEARCH IN THISICS)	VII/PAPER I
	Subject: Physics	
Course code	Course Title: Mathematical Physics	
	Course Outcomes	
Students wou	Ild be able to understand the mathematical methods essential for	or solving the
advanced pro	blems in physics. It would be helpful in the development of the ab	oility to apply
the mathema	tical concepts and techniques to solve the problems in the	eoretical and
experimental	physics. The knowledge of mathematical physics would be benefi	cial in further
research and	development as it serves as a tool in almost every branch of	f science and
engineering C	· ·	
engineering c	ourse.	
Credits: 4		Core
		Compulsory
Max. Marks	: 100	Min.
External Exa Internal asse		Passing Marks: 36
	ectures-Tutorials-Practical (in hours per week): 4-0-0	Ivial KS. JU
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Special Functions Series solution of differential equations,	
	Legendre, Bessel, Hermite, and Laguerre differential equation	
	and related polynomial, physical integral form of polynomials	15
	and their orthogonality relations. Generating Function and	
	recurrence relation.	
UNIT II	Curvilinear Coordinates and Tensors Curvilinear Coordinates	
	and various operators in circular, cylindrical and spherical	
	coordinate systems, classification of Tensors, Rank of a	15
	Tensor, covariant and contra-variant tensors, symmetric and	_
	anti-symmetric Tensors, Kronecker delta symbol. Contraction	
	of Tensor, metric Tensor and Tensor densities, covariant	
	differentiation and Geodesic equation (variational Method).	
UNIT III	Complex Variables Function of complex variable, Cauchy's	
	Riemann differential equation, Cauchy's integral theorem,	
	residues and Cauchy's residues theorem, singularities,	15
	evolution of residues and definite integral.	
UNIT IV		
	Integral Transforms Fourier integral and Fourier Transform,	
	Fourier integral theorem, finite and infinite integral, Laplace	15
	transform of elementary function (Dirac delta & Green's	
	function), Solution of simple differential equations.	

Suggested Readings:	
B. S. Rajput: Mathematical Physics (Pragati Prakashan, Meerut) L. I. Pipes: Mathematical Physics (McGraw Hill)	
P. K. Chattopadhyay: Mathematical Physics (Wiley Eastern, New Delhi)	
Afriken.: Mathematical methods for Physics	
Harper Charlie: Introduction to Mathematical Physics	
Mathews and Walker: Mathematical Methods of Physics (Benjamin press)	
Horse and Feshbach : Methods of Theoretical Physics (McGraw Hill)	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MESTER I/PAPER
II	
	thematical
alized co	oordinates,
n understa	anding of
Co	
	mpulsory
Mi Pa Ma	in. issing arks: 36
	f
). of ectures
lized 15	
for	
ions,	
, one,	
eory 15	
ince,	
nical	
kets,	
Kets,	
and 15	
nsor,	
1	
hase 15	
otion	
cs,	
с 	s,

Whittaker : Analytical Dynamics of Particles and Rigid Bodies - Cambridge	
Raychaudhuri : Classical Mechanics, Oxford Bhatia : Classical Mechanics, Narosa.	
H.M. Agrawal: Classical Mechanics, New Age International	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACH	ELOR (RESEARCH I	N PHYSICS)	
Programme: BACH	ELOR (RESEAF	RCH IN PHYSICS)	YEAR IV	SEMESTE
				R VII/PAPER
				III
		Subject: Physics	: Quantum Mechanics	
Course code				
		Course Outcome	s:	
and nuclear) scale of quantum Mech behaviour of all p review of founda	and even sma anics. The co hysical system tions of quant	ller. Students would urse, in fact, plays a s in the universe. Th um mechanics, matri	r of the systems at micros learn basic postulates and an important role in e e course includes the stu x formulation of quantu ethods for bound states.	l formulations xplaining the dy of a brief
Credits: 4				Core
				Compulsory
Max. Marks: 100 External Exam: ' Internal assessme	-			Min. Passing Marks: 36
Total No. of Lectu	res-Tutorials-P	ractical (in hours per	week): 4-0-0	•
UNIT		TOPIC		No. of Lectures
UNIT I	Equation Schrödinger's continuity ex- function, orth superposition, equation in t well and har	equation, Probabilit quation, physical ir hogonality of eigen wave packet, norm hree dimensions, cen	anics and Schrödinger y and current densities, interpretation of wave functions, Principle of nalization, Schrödinger's intrally symmetric square monic oscillator and its	15
UNIT II UNIT III	State vectors and Eigen ve Projection op Notations, Po Momentum behavior, Hei Theory of An Orbital Angu	ectors of an operator, erators, commuting o ostulates of Quantum and Energy repro- senberg, Schrödinger ngular Momentum	bert Space, Eigen values Hermitian ,Unitary and perators, BRA and KET Mechanics, co-ordinate esentations, dynamical and interaction Pictures	15
UNIT IV	momentum, C Approximati Time indeper	Pauli's theory of spin, ClebschGordan coeffic on Methods Ident and Time depen- nary Perturbation, fir	ients ndent Perturbation	15

quantization rule, Penetration of potential barrier, Time independent perturbation theory and its applications. Applications of time-dependent perturbation theory for constant perturbation, Fermi Golden rule, Coulomb excitation, Sudden and adiabatic approximation.	
Suggested Readings	
B. S. Rajput: Advanced Quantum Mechanics	
Schiff: Quantum Mechanics	
Thankppan: Quantum Mechanics	
Loknathan and Ghatak Quantum Mechanics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
5. Swayanii Taolaa Diffi Chamber,	

	BACHELOR (RESEARCH IN PHYSICS)			
Programme:		MESTER I/PAPER IV		
	Subject: Physics			
Course code Course Title: Communication Electronics				
	Course Outcomes			
systems. The transmission Propagation transmitter, 7	e helps the student to gain basic ideas of the fundamentals of come course includes Modulation AM and FM (Transmission and recond, AM detection, AGC, Radio receiver characteristics, FM of Radio Waves ,Antenna , Fundamentals of image transmission Lines etc. The course may provide the opportunity to a related to communication.	eption), SSB transmitter, nsmission,TV		
Credits: 4		Core		
Max. Mark	761 100	Compulsory Min.		
External E		Passing Marks: 36		
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	I		
UNIT	ΤΟΡΙΟ	No. of Lectures		
UNIT I	Modulation AM and FM (Transmission and reception):	15		
	Modulation, AM generation, Power consideration, Balanced			
	-			
	modulator, SSB transmission, AM detection, AGC, Radio receiver			
	characteristics, signal to noise ratio, FM analysis, noise			
	considerations, generation, direct method and reactance tube			
	method, FM transmitter, AFC, FM Propagation, phase			
	discriminator			
UNIT II	Propagation of Radio Waves Ground wave, sky wave and space	15		
	wave propagation. Ionosphere (Ecclr- larmer theory, magneto			
	ionic theory.			
UNIT III	Antenna and TV Antenna, HF antenna, Yagi antenna, loop	15		
UTTEL 111				
	antenna, Satellite communication, parabolic reflector, dish			
	antenna, Fundamentals of image transmission, vestigial			
	transmission, TV camera tubes, image orthicon, vidicon, TV			
	transmitter, TV receiver and picture tubes.			
UNIT IV	Transmission Lines Voltage and current relations on transmission	15		
	line, propagation constant, characteristic impedance, impedance			
	matching, quarter wave T/L as impedance transformer, attenuation			
	along coaxial cable, cables of low attenuation, propagation of			
	radio waves between two parallel lines, wave guide modes, TE10			
	mode and cut off wavelength, cavity resonator, light propagation			
	in cylindrical wave guide, step index and graded index fibers,			
	attenuation and dispersion in fibers			

Suggested Readings:	
George Kennedy & Davis: Electronics Communication Systems	
Millar & Beasley: Modern Electronics Communication	
R.R Gulani: Monochrome and colour television (Wiley Eastern Limited)	
Taub and Schilling: Principle of Communication Systems (TMH)	
Simon Gaykuti: Communication Systems (John Wiley & Sons Inc. 1994	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)				
Programm	e: BACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VII/PAPER V		
	Subject: Physics	v		
Course co				
Student v and Optic	Course Outcomes: vould gain practical knowledge by performing various experiments of cs.	Electronics		
Credits: 4		Core Compulsory		
External Internal	arks: 100 Exam: 75 assessment: 25	Min. Passing Marks: 36		
Total No.	of Lectures-Tutorials-Practical (in hours per week): 4-0-0			
UNIT	List of Experiments	No. of Lectures		
	Study of RC circuit with an AC source using phase diagrams.			
	Absorption Spectrum of KMnO4 using Hilger-Nutting Photometer.	60		
	Young's modulus by Interference method.	60		
	NPN and PNP Transistor Characteristics with (a) Common base (b)			
	Common emitter configurations/ h – parameter.			
	Study of RC- coupled/ Transformer Coupled Amplifier.			
	Study of B-H curve.			
	Study of Amplitude Modulation /Demodulation.			
	Verification of the Hartmann's Formula.			
	Frank-Hertz experiment.			
	e/m by Zeeman effect.			
	Determination of susceptibility.			
	Study of CRO.			
	Velocity of Ultrasonic waves.			
	Linear Air track.			
	Leacher Wire			

Can be opted by				
Bachelor in Science with Physics as major subject				
Suggested Continuous Evaluation Methods:				
Course Prerequisites Bachelor in Science with Physics as major subject				
Suggested Equivalent Online Courses:				
1. Virtual Labs at Amrita Vishwa Vidyapeetham,				
https://vlab.amrita.edu/?sub=1&brch=74				
2. Digital Platforms /Web Links of other virtual labs may be suggested / added				
to this lists by individual Universities				

		BACHELOR (RESEARCH IN PHYS	SICS)		
Programme: BAC	THELO	R (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER I	
		Subject: Physics			
Course code	Course code Course Title: Atomic and Molecular Spectra				
The course struct the students lear technique in spo students to expl biomedical, indu	nts would learn helpful for the				
Credits: 4				Core Compulsory	
Max. Marks: 10 External Exam Internal assessi Total No. of Lectu	: 75 nent: 2	25 Itorials-Practical (in hours per week): 4-0-0		Min. Passing Marks: 36	
UNIT		ΤΟΡΙΟ		No. of Lectures	
UNIT I	Spect	structure of hydrogen spectrum, L-S an troscopic terms, Hund's rule and time r usion principle.	1 0	15	
UNIT II	alkali Norn	li spectra, spin-orbit interaction and fin i Spectra, Equivalent and non-equiva- nal and anomalous Zeeman effect, Pasch c effect, Hyperfine structure (qualitative).	alent electrons, en Back effect,	15	
UNIT III	Oppe quant spect (harm	ecular spectra of diatomic mol enheimer approximation, elementar tization of rotational and vibrational en ra for rigid and non rigid rotations, vib nonic and an-harmonic), intensity and sel nolecular constants.	ergy, rotational prational spectra		
UNIT IV	Rama Elect band	nic Polarizability, Raman spectra, Quar an spectra, Determination of molec ronic spectra, band system, Progression head formation, Condon parabola, Fran- siple dissociation energy and its determin	cular structure, and sequences, ick Condon	15	
Suggested Readings: C. B. Banwell: Fundamentals of Molecular Spectroscopy Walker and Stranghen: Spectroscopy Vol. I, II, & III G.M. Barrow: Introduction to Molecular Spectroscopy Herzberg: Spectra of					
diatomic			15. Speeda of		

Jeanne L Mchale: Molecular Spectroscopy	
J. M. Brown: Molecular Spectroscopy	
P. F. Bemath: Spectra of atoms and molecules	
J. M. Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications	
A Yariv: Quantum Electronics	
M. D. Levenson: Intoduction to non-linear laser spectroscopy	
B. B. Laud: Laser and non-linear optics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Passed Semester VII with Physics as major	
Passed Semester VII with Physics as major Suggested Equivalent Online Courses:	
Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	
Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd	
Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER II
	Subject: Physics	
Course code		
	Course Outcomes:	
The study of el	ectrodynamics provides basic foundation for the student to unde	erstand advance
courses of phy	sics. The course includes Basic equations of Electromagnetism,	Electrostatics;
Magnetostatics	; Maxwell's equation, Four Vector Formalism of Maxwell's I	Equations Four
vector potential	, electromagnetic field tensor and Quantization of electromagnet	ic energy
Credits: 4		Core
Max. Marks:	nn	Compulsory Min Passing
External Exan	n: 75	Min. Passing Marks: 36
Internal assess		
I otal No. of Lec	tures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Electromagnetism	15
	Basic equations; Electrostatics; Magnetostatics; Different	
	Systems of Units, Preliminary notations, four- vectors,	
	Lorentz transformations, time, space and light like	
	separations, Lorentz invariants, Energy and Momentum.	
UNIT II	Maxwell's Equations	15
	Maxwell's equation, Displacement current, electromagnetic	
	waves in conducting and nonconducting medium, Poynting	
	theorem, boundary condition at the interface of conducting	
	and non conducting media, propagation between parallel	
	conducting plates. Electromagnetic wave equations	
UNIT III	Four Vector Formalism of Maxwell's Equations	15
	Four vector potential, electromagnetic field tensor, Lorentz	
	invariance, Lorentz force, covariant form of Maxwell's	
	equations, four vector current, continuity equation, Gauge	
	invariance of Maxwell equation, electromagnetic energy-	
	momentum tensor, Motion of charge particle in	
	electromagnetic field, Lorentz force	
UNIT IV	Electromagnetic Radiation	15
	Lienard-Witchert potential, conventional potential,	
	Quantization of electromagnetic energy (virtual photon),	
	Radiation from an Accelerated Charge, Fields of an	
	accelerated charge; angular and frequency distributions of	
	the emitted radiation, special cases of acceleration parallel	
	and perpendicular (circular orbit) to velocity; Larmor's	

	formula and its relativistic Generalization; Bremstrahlung, Cerenkov radiation	
	Suggested Readings	
Jackson:	Classical electrodynamics; Wiley Eastern, New Delhi	
Landau a	and Lifshitz: Classical theory of fields; Pergameon Press	
Thide : H	Electromagnetic field Theory	
Panofsky	y and Phillips: Classical Electricity and Magnetism	
Landau d	&Lifshitz : Electrodynamics of Continuous Media	
	Can be opted by	
В	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Le	arning - Massachusetts Institute of Technology,	
https://openlearr	ning.mit.edu/	
2. National Prog	gramme on Technology Enhanced Learning (NPTEL),	
https://www.you	ntube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,		
https://www.swayamprabha.gov.in/index.php/program/current_he/8		

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BAC	CHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER III
	Subject: Physics	
Course code	Course Title: Elementary Particle Physic	S
	Course Outcomes	
The course is in	portant for the students to learn about the most fundamenta	l building blocks
of matter and ra	adiation, interaction among elementary particles and hence to	understand their
behaviour. The	course provides a platform for the students seeking research	opportunities in
high energy phys	sics.	
0 00 1 0		
Credits: 4		Core
Max Maxbox 1	ΔΔ	Compulsory
Max. Marks: 1 External Exam		Min. Passing
Internal assess		Marks: 36
Total No. of Lectu	ures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Elementary Particles History of elementary particles	
	Classification of elementary particles, Fundamenta	
	interactions, Resonances, Lepton and Baryon number	
	Isospin, Strangeness, Hypercharge, Gell - Mann Nishijim	
	relations, Symmetries and conservation laws, Parity, Tim	e
	reversal and charge conjugation, Parity violation, CP	
	violation in mesons, CPT invariance.	
UNIT II	Unitary Symmetries and Application in the Physics of	of 15
	Elementary Particles Basics of unitary groups, fundamenta	ıl
	representation of SU(2), SU(3) diagonal generators an	d
	weights, generators of SU(2) and U(2), weight diagram of	of
	fundamental representation of SU(2), generators of SU(3	
	and U(3), Weight of first fundamental representation of	
	SU(3), shift operators, I, U, V spins, complete weight	
	diagram for the $(1 \ 0)$, $(0 \ 1)$, $(3, \ 0)$, $(1 \ 1)$ and $(2 \ 1)$	
UNIT III	representations of SU(3), Gell Mann Okubo Mass formula.	g 15
	Method of Young Tableaux and its Applications Youn	-
	Tableaux and unitary symmetry, standard arrangements of	
	young tableaux, Dimentaionality of the representations of	
	SU(N), Multiplets of SU(N-1), subgroup of SU(N), Baryo	
	multiplets in different representations, general rule and it	
	application for reducing kronecker product of tw	0
	representations, kronecker product of three particle state	
	vectors.	
UNIT IV	Nuclear and Particle Detectors Basic principle of particle	15

	detectors, Ionization chamber, Proportional counter, Geiger-	
	Muller Counter, Scintillation counters and-ray spectrometer,	
	• •	
	semiconductor detector, Nuclear emulsion technique, Cloud	
	chamber, Bubble chamber	
	Suggested Readings:	
D. H. Pe	rkins: Introduction to High Energy Physics, Cambridge	
	y Press, 2000	
Chiverbit	J 1 1033, 2000	
S N Ch	oshal: Atomic and Nuclear Physics, S. Chand and Company	
Ltd, 1994		
D. Griffit	hs : Introduction of Elementary Particles	
DB Licht	tenberg: Unitary Symmetry and Elementary Particles,	
	c Press, 1978	
1 Toudonine		
Uughaa. 1	Elementary Particles	
nugnes: 1	Elementary Particles	
Blatt and	Weiskopff : Theoretical Nuclear Physics	
FE Close:	: Quarks and Patrons	
P.P.Chen	g and G.LF Li : Gauge Field Theory:	
	6 6 ,	
W E Bu	rcham : Nuclear Physics	
K. IVI. 51	ngru: Introduction to experimental nuclear physics	
E C		
E. Segre:	Experimental nuclear physics	
	Can be opted by	
Ba	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Mathada	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Lea	arning - Massachusetts Institute of Technology,	
https://openlearni	ing.mit.edu/	
	ramme on Technology Enhanced Learning (NPTEL),	
	tube.com/user/nptelhrd	
	*	
	a - DTH Channel,	
https://www.sway	yamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHY	(SICS)	
Programme: B	ACHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER
			IV
~ .	Subject: Physics		
Course code	Course Title: Condense	ed Matter Physics	
	Course Outcomes:		
structures, sy using X-ray lattice vibrati	will be able to develop an understanding of the remmetries. The student would gain insight about diffraction in crystals. This course also include onal properties and also superconductivity. The tal material science and technology.	t the interior of es elastic waves,	the substances phonons, and
Credits: 4			Core Compulsory
Max. Marks External Exa Internal asse	am: 75		Min. Passing Marks: 3 6
	Lectures-Tutorials-Practical (in hours per week):	4-0-0	
UNIT UNIT I	ТОРІС		No. of Lectures
	nanodimension.	Concept of ocal lattice point of reciprocal scattering and rfine interactions etic splitting), c idea about n of properties in	15
UNIT II	Bonding in Solids Different types of bo covalent, metallic, Vander Waal, hydrogen bonding, Madelung constant of ionic cr energy, Thermal expansion and thermal condr anharmonicity interaction of electrons and j photons (direct and indirect transitions).	bonding & ionic ystals, cohesive uctivity,	15
UNIT III	Lattice Vibrations Concept of dispo quantization of lattice vibrations (Phonons), normal coordinates, longitudinal and trans vibration, modes of vibration of monatom lattices. Density of states (Phonons), Theor of solids : classical theory, Einstein theory a .Theory of metals : Classical theory, free ele F-D distribution function, Hall effect.	sverse modes of nic and diatomic y of specific heat and Debye theory	
UNIT IV	Crystal Defects, Superconductivity and Ma defects (Schottky & Frankel Defects) Imperf defects (Edge& Screw dislocations), Burger	ections, Line	15

	Circuit, Role of dislocation in plastic deformation and crystal	
	growth. Introduction of superconductivity,	
	phenomenological, semi phenomenological and microscopic	
	theories of superconductors, Meissner effect, Type-I and type-	
	II superconductors, Penetration depth, coherence length,	
	Josephson effect, Isotope effect, Elementary idea of high	
	temperature superconductors	
	Suggested Readings	
A. J. De	kker: Solid State Physics	
S.O. Pill	ai : Solid State Physics	
C. Kittle	: Introduction to Solid State Physics	
Verma &	&Srivastava : Crystallography for Solid State Physics	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Le	earning - Massachusetts Institute of Technology,	
https://openlearr	ning.mit.edu/	
2. National Prog	gramme on Technology Enhanced Learning (NPTEL),	
https://www.you	utube.com/user/nptelhrd	
3. SwayamPrabl	ha - DTH Channel,	
https://www.swa	ayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PH	YSICS)	
Programme	: BACHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER V
	Subject: Physics		
Course cod	e Course Title: PRAC	TICAL	
	Course Outcomes:		
The studen	nt will have adequate knowledge to perform the e	experiments	of different fields of
	th clear understanding of the theory behind the exp	-	
	Il know about various electronic components and		m some basic
	circuits and study their applications.		
Credits: 4			Core
Max. Mar	1/6+ 1/1/		Compulsory
External			Min. Passing Marks: 36
	f Lectures-Tutorials-Practical (in hours per week): 0-0-	4	
UNIT	List of Experiments		No. of Lectures
	1. Study of the Phase measurement by sup	erposition of	
	voltages with LCR Circuits.		
	2. Study of different oscillators (Hartely, co	olpit, Weinbri	dge
	oscillators etc.).		60
	3. Study of an electronically regulated power	supply.	
	4. Study of negative Feed- back Amplifier.		
	5. Determination of wavelength (λ) and v		
	difference ($\Delta\lambda$) by Michelson Interferom		
	6. Study of different type of Resistances and	Diodes.	
	7. Study of Photo Voltaic Cell.		
	8. Stefan's Constant		
	9. FET characteristics		
	10. Fresnel's Law		
	11. Cauchy Formula		
	12. Lattice Dynamic Kit		
	13. Study of Logic gates		
	 14. Detection Efficiency of Diode 15. Fabry – Perot Interferometer 		
	16. Four Probe method		
	Can be opted by		
	Bachelor in Science with Physics as major subje	ct	
	Suggested Continuous Evaluation Methods:		
	Course Prerequisites Bachelor in Science with Physics as major subje	et	
	Bachelor in Science with Physics as major subje	(1	
1 17'	Suggested Equivalent Online Courses:	V : J	
	tual Labs at Amrita Vishwa	Vidyapeetha	am,
https://vlab	o.amrita.edu/?sub=1&brch=74		
	Platforms /Web Links of other virtual labs may	be suggeste	ed /
2. Digital	Thatforms / Web Links of other virtual labs may	88	
-	his lists by individual Universities	66	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme	: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SE	MESTER VIII
		.3(1)
	Subject: Physics	
Course cod		
1	Course Outcomes:	
	e structure includes different aspects of statistical Mechanics and S	
for phase	transition. Study of this course will enable students a clear u	nderstanding of
classical a	nd Quantum Statistics.	
Credits: 4		Elective
Max. Ma		Min. Passing
External		Marks: 33
	ssessment: 25	
Total No. 0	f Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNITI	Foundation of Statistical Mechanics Microscopic and	
	macroscopic states, Density of states, Micro-canonical,	1.5
	Canonical and grand canonical ensembles, Canonical ensemble	
	and Gibb's distribution, Boltzmann–Planck method, Partition	
	function and statistical definition of thermodynamic quantities,	
UNIT II	Computation of partition functions of some standard systems.	15
	Statistical Properties System of linear harmonic oscillators in the	15
	canonical ensemble; Grand canonical ensemble and its partition function; Chemical potential; Partition function and distribution	
	for perfect gas; Gibb's paradox; Free energy, entropy, Equation	
UNIT III	of state and specific heat determination of perfect gas. Statistical models Theory of phase transitions, First order phase	15
	transition, Second order phase transitions and higher order phase	15
	transitions (elementary discussion), Ising model, One	
	dimensional (with exact solution), Two dimensional (with exact	
	solution) & three dimensional model (elementary idea), Landau	
	theory of phase transition, Weiss theory of Ferro-magnetism,	
	Heisenberg model. Virial equation of states.	
UNIT IV	Quantum Statistics Bose-Einstein and Fermi- Dirac	15
	distributions, Degeneracy, Gas degeneration, Degenerate Bose	-
	gas, Bose Einstein condensation, Highly degenerate B-E and F-	
	D gases; examples of Molecular Hydrogen, liquid helium and	
	electron gas in metals.	
	Suggested Readings	
Quantum N	Mechanics : A.S. Davidov	
~	Aechanics : B.S. Rajput	
Quantum Mechanics : Paul Roman		
Theoretical Chemistry : Glastohn		
Statistical Mechanics : Landau and Lifshitz		
Statistical Mechanics : Pathira Statistical Mechanics : Huang		
Statistical N	·	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
L	U Grant Grant	1

Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BACHELC		EMESTER
		III EL3(2)
0 1	Subject: Physics	
Course code	Course Title: Bio Physics	
	Course Outcomes:	
- ·	d that applies the theories and methods of physics to und	
e .	rk.The student"s knowledge can be used in the sector relation	ter to health
and Medical .		
Credits: 4		Elective
Max. Marks: 100 External Exam: 75		Min. Passing
Internal assessment:	25	Marks: 36
Total No. of Lectures-T	utorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of
		Lectures
UNIT I	Basic Concepts in Biophysics	15
	Elementary ideas about the DNA structure, Forces	
	stabilizing DNA and protein structure, sugar-phosphate	
	backbone, nucleosides and nucleotides, three dimensiona	1
	DNA structure, RNA. Proteins: primary, secondary	,
	tertiary and quaternary structures, enzymes and their	r
	catalytic activity, DNA and protein folding, DNA	L
	denaturation, replication, mutation, intercalation,	
	neurotransmitters, membranes.	
UNIT II	Technique For The Study of Biological Structure and	15
	Function	
	Application of experimental techniques of light scattering	5
	(tomography), FTIR and Raman spectroscopy, absorption	1
	and fluorescence spectroscopy/ microscopy, anisotropy,	
	optical activity, circular dichroism, electrophoresis,.	
UNIT III	Photobiology	
	interaction of light with cell and tissues, Photosynthesis	
	human eye and vision optical biopsy, optical biosensors Laser tweezers and Laser scissors Photo-dimerization	
	Photodynamic therapy.	,
UNIT IV	Radiation Effects on Biological Systems	15
	High doses received in a short time, Low-level doses	
	limits, direct ionization of DNA, radiation damage to	
	DNA, Biological effects (Genetic, Somatic, Cancer and	
	sterlity). Bio-imaging: Ultrasound, MRI imaging, confoca	
	fluorescence imaging and X-ray.	
	Suggested Readings:	
Essentials of Bi	ophysics: P. Narayanan.	
Basic Molecula	r Biology: Price.	

Quantum Mechanics of Molecular Conformations: Pullman (Ed.).	
Non-linear Physics of DNA: Yakushevich.	
Biological Physics: Nelson. Spectroscopy of biological systems	
Modern Spectroscopy: J.M. Hollas.	
Transmission Electron Microscopy of Metals: Gareth Thomas	
Elements of X-ray Diffraction: Bernard Dennis Cullity.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	_
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BAC	CHELOR (RESEARCH IN PHYSICS) YEAR IV SEME EL3(3	STER VIII)
	Subject: Physics	
Course code	Course Title: Medical Physics	
processes and a Physics uses r biological organ Physics of Resp and also Equip	Course Outcomes: s is a branch of science that uses the methods of physics to study lso working of the instruments and machines used in Medical Science nathematical laws to explain the natural world, and it can be a nisms and systems to gain insight into their workings. The course piratory and Cardiovascular System, Electricity in the Body and So ment's and Modern Medicines .The course opens future prospec- eld of Medical Science .	e pplied to e includes ound/Light
Credits: 4		Elective
Max. Marks: 1 External Exam Internal assess	: 75	Min. Passing Marks: 36
Total No. of Lect	ures-Tutorials-Practical (in hours per week): 4-0-0	1
UNIT	ТОРІС	No. of Lectures
UNIT I	Mechanics of Human Body	15
	Static , Dynamic an d Frictional forces in the Body, Composition, properties and functions of Bone, Heat and Temperature, Temperature scales, Clinical thermometer, Thermography, Heat therapy, Cryogenics in medicine, Heat losses from Body, Pressure in the Body, Pressure in skull, Eye and Urinary Bladder.	
UNIT II	Physics of Respiratory and Cardiovascular System Body as a machine, Airways, Blood and Lungs interactions, Measurement of Lung volume, Structure and Physics of Alveoli, Breathing mechanism, Airway resistance, Components and functions of Cardiovascular systems, work done by Heart, Components and flow of Blood, Laminar and Turbulent flow, blood Pressure, direct and indirect method of measuring, Heart sounds.	
UNIT III	 Electricity in the Body and Sound/Light In Medicine Nervous system and Neuron ,Electrical potentials of Nerves, Electric signals from Muscles, Eye and Heart, Block diagram and working to record EMG, Normal ECG wave form, Electrodes for ECG, Amplifier and Recording device, Block diagram and working to record ECG, Patient monitoring, Pace maker. General properties of sound, Stethoscope, Generation, detection and characteristics of Ultrasound, Ultrasound imaging technique, A scan and B scan methods of ultrasound imaging, 	15

	properties of light, Applications of visible UV, IR light, and	
	Lasers in medicine, Microscope, Eye as an optical system,	
	Elements of the Eye, Ophthalmology Instruments.	
UNIT IV	Diagnostic X-Rays and Nuclear Medicine	15
	Production and properties of X-rays, Basic Diagnostic X-ray	
	Machine, X-ray image, Live X-ray image, X-ray computed	
	Tomography, Characteristics of Radio activity, Radioisotopes	
	and Radio nuclides, Radioactivity sources for Nuclear	
	medicine, Basic Instrumentation and clinical applications,	
	Principles of Radiation Therapy, Nuclear medicine imaging	
	devices, Radiation sources.	
	Suggested Readings:	
Medical Ph	hysics by Department of Physics, St. Joseph's College, Trichy-2.	
Medical Ph Sons.	nysics by John R. Cameron and James G. Skofronick, John Wiley &	
	of Biomedical Instrumentation : R.S.Khandpur, Tata McGraw Hill n Co., Delhi, 1987.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
-	rning - Massachusetts Institute of Technology,	
https://openlearnir		
e e	amme on Technology Enhanced Learning (NPTEL),	
· ·	ube.com/user/nptelhrd	
3. SwayamPrabha	- DTH Channel,	
https://www.sway	amprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	ACHELOR (RESEARCH IN PHYSICS) YEAR IV S	EMESTERVIIIE .3(4)
	Subject: Physics	
Course code	Course Title: Atmospheric Physics	
	Course Outcomes:	
Environmental work in Meter	atroduces students to Earth- Atmosphere and Meteorology The pollution and climate change etc. The course is useful for the stud- eological department or wants to pursue his/her career in the field ourse is also very important for R& D purposes.	dents who want to
Credits: 4		Elective
Max. Marks:		Min. Passing
External Exa		Marks: 33
Internal asses	ctures-Tutorials-Practical (in hours per week): 4-0-0	
Total No. 01 Le		
UNIT	TOPIC	No. of Lectures
UNIT I	Introduction to Earth Atmosphere and Meteorology	15
	Elementary concept of atmospheric sciences, atmosphere and it	
	composition, Thermal and pressure variation in earth atmosphere,	
	Thermal structure of the troposphere, stratosphere, mesosphere	
	and ionosphere, Hydrostatic equation, spectral distribution of the	
	solar radiation, Green house effect and effective temperature of	
	earth. Meteorological process and different system, local winds,	
	monsoons, fogs, clouds, precipitation, Cyclones and anti-	
	cyclones, thunderstorms, Mountain Meteorology	
UNIT II	Atmospheric Dynamics and Thermodynamics	15
	Introduction to atmospheric dynamics, Basic conservation laws,	
	Applications of the basic equations, circulations and vorticity,	
	Atmospheric oscillations, The general circulations, Tropical	
	dynamics, Thermodynamical considerations, Adiabatic and	
	isothermal processes, equation of state for dry and moist air,	
	Humidity parameters, laws of thermodynamics, Entropy,	
	Thermodynamic diagram and their uses.	
UNIT III	Environmental pollution and climate change	15
	Atmospheric pollution, type of pollutants, various sources of	
	emissions, Trace gages, Production and loss processes of	
	stratosphere ozone, Tropospheric ozone, Role of trace gases and	
	their budget, motion of air-masses (back-air trajectory), tools for	
	modeling (Box model and 3-D model), Atmospheric aerosols,	
	classification and properties, concentration and size distribution,	
	Absorption and scattering of radiation, optical phenomena in	
	atmospheric, Modeling for aerosols, Estimations of radiative	
	forcing. Definition of climate long term changes, possible causes	
	of climate change-External and internal, General idea of internal	
	dynamical processes of the atmosphere, climate modeling,	
	Review of various climate models.	

UNIT IV	Instrumentation and Observational Techniques	15
	Convectional measurements of pressure, temperature, humidity,	
	wind speed and direction, sunshine duration, radiation clouds,	
	upper air pressure, temperature, humidity and wind	
	measurements, Polit balloons, radiosonde, dropsonde,	
	ozonesonde, GPS sonde. Application of radars to study the	
	atmospheric phenomenon, LIDAR, SONAR, RASS (Radio-	
	acoustic sounding system), Observational technique for aerosol.	
	Suggested Readings:	
	S. Pettersen: An Introduction to meteorology	
	H. R. Byer: General Meteorology Miller, Thompson and Paterson:	
	Elements of meteorology	
	J. M. Wallau and P. V. Hobbs: Atmospheric Science	
	J. A. Ratchiffe: Physics of upper atmosphere	
	R. B. Stull: An introduction to boundary layer Meteorology	
	D. H. Lenschow: Probing the atmospheric boundary	
	D. H. Lechow: Intruments and Techniques for probing the atmospheric boundary layer	
	A.A. Tsonis: An introduction to atmospheric Thermodynamics	
	H. J. Critchfield: General Climatology G. T. Trewartha: An introduction to climate	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Oper	n Learning - Massachusetts Institute of Technology,	
https://openl	earning.mit.edu/	
2. National I	Programme on Technology Enhanced Learning (NPTEL),	
https://www	.youtube.com/user/nptelhrd	
*	rabha - DTH Channel,	
-	.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BA	ACHELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTERVIIIE L3(5)
	Subject: Physics	
Course code	Course Title: Nano Materials and Applica	tions
	Course Outcomes:	
This course in	troduces the essence of nano materials, their synthesis, and c	haracterization. On
successful cor	npletion of the module students should also be able to und	erstand the optical
properties and	l electron transport phenomenon in nanostructures. It also co	vers few important
applications of	f nano materials used in this technological era.	
Credits: 4		Elective
Max. Marks:	100	Min. Passing
External Exa		Marks: 33
Internal asses	ctures-Tutorials-Practical (in hours per week): 4-0-0	
1 otur 110. 01 LC		
UNIT	ТОРІС	No. of Lectures
UNIT I	Nanoscale Systems	15
	Density of states (1-D,2-D,3-D). Length scales in physic	s,
	Nanostructures: 1D, 2D and 3D nanostructures (nanodot	5,
	thin films, nanowires, nanorods), Band structure and densit	у
	of states of materials at nanoscale, Size Effects in nan	0
	systems, Applications of Schrodinger equation- Infinit	ie
	potential well, potential step, potential box, quantur	n
	confinement of carriers in 3D, 2D, 1D nanostructures and i	ts
	consequences.	
UNIT II	Synthesis of Nanostructure Materials	15
	Metals, Metal Oxide, Carbon based nanomaterials CNT	Γ,
	C60, graphene. Top down and Bottom up approach	n,
	Photolithography. Ball milling. Gas phase condensation	ı.
	Vacuum deposition. Physical vapor deposition (PVD	
	Thermal evaporation, Chemical vapor deposition (CVD).So	
	Gel. Spray pyrolysis. Hydrothermal synthesis. Preparatio	
	through colloidal methods. MBE growth of quantum dots.	
	X-Ray Diffraction. Optical Microscopy. Scanning Electro	n
	Microscopy. Transmission Electron Microscopy. Atomi	
	Force Microscopy. Scanning Tunneling Microscopy.	
	· · · · · · · · · · · · · · · ·	
UNIT III	Optical Properties	15
	Concept of dielectric constant for nanostructures an	d
	charging of nanostructure. Quasi-particles and exciton	
	Excitons in direct and indirect band gap semiconductor	
	nanocrystals. Quantitative treatment of quasi-particles and	
	and a state of the	-

	excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostrctures and nanostructures.	
UNIT IV	Electron Transport and Applications of Nanoparticles Carrier transport in nanostrcutures. Coulomb blockade effect, thermionic emission, tunneling and hopping conductivity. Defects and impurities: Deep level and surface defects. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots -magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).	15
Pvt. Ltd.). S.K. Kulkarni Company) K.K. Chattopa Technology (P Introduction to Stroscio, 2011	Suggested Readings: Frank J.Owens, Introduction to Nanotechnology (Wiley India , Nanotechnology: Principles & Practices (Capital Publishing adhyay and A. N. Banerjee, Introduction to Nanoscience and PHI Learning Private Limited). to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. , Cambridge University Press. er, Earl Boysen, Nanotechnology (John Wiley and Sons).	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
https://openlea 2. National Pro https://www.yo 3. SwayamPra	Suggested Equivalent Online Courses: Learning - Massachusetts Institute of Technology, arning.mit.edu/ ogramme on Technology Enhanced Learning (NPTEL), outube.com/user/nptelhrd bha - DTH Channel, wayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICSYEAR V	SEMESTER IX
	Subject: Physics	PAPER I
Course code	Course Title: Advanced Quantum Mecha	nics
	Course Outcomes:	
The course inclu	udes the study of scattering theory, identical particles, 1	elativistic wave
equations and q	uantization of wave fields. The course would describe	the nature and
behaviour of mat	ter and energy at subatomic level. In particular, theory of so	attering gives an
understanding co	ollision between a quantum mechanical particle and targe	et. The study of
relativistic quant	um mechanics enables the students to understand the beha	viour of objects
moving with spe	eeds comparable to that of light. The knowledge of this	field forms the
	rsuing research in Quantum Field Theory and High Energy p	
Credits: 4		Core
Max. Marks: 10	0	Compulsory Min.
External Exam:	75	Passing
Internal assessm		Marks: 36
I otal No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Free particle Dirac equation	15
	Discrepancies faced by Schrödinger equations, Klein	1-
	Gordon equation and its drawbacks, Dirac's equation for	a
	free particle, Dirac matrices, covariant form of Dira	ıc
	equation, Probability and current densities, Free particle	e
	solutions of Dirac equation, Non conservation of Orbita	al
	Angular momentum and idea of spin, Interpretation of	
	negative energy and hole theory	
UNIT II	Dirac particle in Electromagnetic Fields	15
	Dirac equation in electromagnetic fields, Magnetic moment	nt
	of charged particle, Gauge invariance of Dirac equation i	n
	electromagnetic fields, Non- relativistic correspondence of	of
	Dirac equation; Pauli equation, Adjoint spinor	s,
	Symmetries of Dirac Equation: Parity, Time reversal an	d
	Charge Conjugation; Lorentz covariance of Dirac	
	Equation, , Bilinear covariants	
UNIT III	Identical Particles and Quantum Field Theory	15
	Identical particles, exchange degeneracy, symmetric an	d
	anti symmetric functions for many particle system	n
	anti symmetric functions for many particle system Classical Fields, Schwinger's action principle, Lagrangia	
		n

	Quantization relations, Quantization of non relativistic	
	Schrödinger matter field, System of identical bosons and	
	fermions, Commutation and anti-commutation relations,	
	Occupation number representation, creation and	
	annihilation operators.	
UNIT IV	Quantum Theory of Scattering	15
	Scattering Theory, Scattering cross section, method of	
	partial wave analysis, phase shift, Optical theorem,	
	scattering length, effective range theory; low energy	
	scattering, Resonance, scattering from a square potential	
	well and a rigid sphere, Born approximation, Validity of	
	Born approximation, Born approximation through time	
	dependent perturbation, its application to square well	
	potential.	
	Suggested Readings:	
	avydov : Quantum Theory Messiah : Quantum Mechanics Vols. I	
&	11	
Ra	jput B. S. : Advanced Quantum Mechanics	
	opman P. : Advanced Quantum Mechanics Trigg : Quantum echanics	
	aankappanV.K. : Quantum Mechanics Sakurai J.J. : Quantum echanics	
	Can be opted by	
Ba	achelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Lea	rning - Massachusetts Institute of Technology,	
https://openlearni		
2. National Progr	amme on Technology Enhanced Learning (NPTEL),	
https://www.yout	ube.com/user/nptelhrd	
3. SwayamPrabha	*	
-	/amprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MAS	STER IN PHYSICS YE	EAR V	SEMESTER IX PAPER II
	Subject: Physics		
Course code	Course Title: Plasm	a Physics	
	Course Outcomes:		
	ides Magneto Hydrodynamics, Plasma Propagati		
	physicists study plasmas, which are considered a di and interplanetary space .The knowledge acquired		
	hysics and thus career prospects are bright in the field		
Credits: 4			Core
Max. Marks: 1	NA		Compulsory
External Exam			Min. Passing Marks: 36
Internal assess			
Total No. of Lectu	ures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	ТОРІС		No. of Lectures
UNIT I	Introduction to Plasma		15
	Elementary concept of plasma: Debye	Shielding,	
	Plasma parameters, Drift of guiding center	, Gradient	
	drift, Curvature drift, Magnetic mirror, Plasm	a	
	confinement		
UNIT II	Magneto-Hydrodynamics and Fluid Plasma		15
010111	Plasma Oscillation, Fluid equations for		
	Continuity equation, Wave Propogation in un		
		•	
	plasma, Magneto Hydrodynamics , Hydro	•	
	description of Plasma: fundamental equation,	-	
	convective derivative, hydromagnetic waves	, magneto-	
	sonic and Alfven waves.		
UNIT III	Magneto Plasma		15
	Wave phenomena in Magneto plasma: P	olarization,	
	Phase velocity, group velocity, cutoff, res	onance for	
		allel and	
	perpendicular to the magnetic field Helicon, F	aradav	
	rotation,.	5	
UNIT IV	Electromagnetic Wave Propagation in Plasm	ng	15
	Propagation at finite angle and CMA		
	Propagation at mine angle and CMA Propagation through ionosphere and magnetos	•	
		•	
	Derivation of moment Equation from		
	Equation, Momentum balance equation, Equat	tions of	
	state, Two-fluid equations, Plasma resistivity		
т	Suggested Readings:	D - 11 '	
J	ackson: Classical Electrodynamics; Wiley Estern, Ne	w Deini	

Bittencourt: Plasma Physics Chen: Plasma Physics	
Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		MASTER IN I	PHYSICS		
Programme: M	ASTER IN PHYS	SICS	YEAR V		ESTER IX
					ER III a cialization
				pape	
		Subject: P	hysics		,
Course code			rse Title: Advanced E	lectronics-	Ι
TT1 1	1 11 1 1 1	Course Out		1 1.'	C 1 4 .
			of the construction a of IC technology, Oper		
			e course is of much		
students to lear	m basics of integr	ated circuit technol	ogy which has wide a	pplications	
process control	, signal processing	, communication sy	stems, digital instrume	ents etc.	
~ * *					~ 1
Credits: 4 Max. Marks:	100				Compulsory
External Exa	m: 75			Mai	. Passing ·ks: 36
Internal asses			1) (0 0		
Total No. of Le	ctures-Tutorials-Pi	cactical (in hours per	week): 4-0-0		
UNIT		TOP	C		No. of
01111		1011			Lectures
UNIT I	Integrated Cir	cuit Technology			15
	Classification	of IC's, Fabrication	on of IC's & con	nponents,	
	Basic monolith	ic integrated circu	it technology, proce	esses used	
	in monolithic t	echnology, active	& passive component	nts, metal	
	semiconductor	contact, thick & th	in film IC's, hybrid	IC's,	
	advantages & l	imitations of integ	rated circuits		
UNIT II	Operational A	mplifier			15
	Basic operatio	nal Amplifier, Inv	erting & Non invert	ting OP -	
	AMP, Commo	n Mode Rejection	Ratio (CMRR), O	perational	
	Amplifier para	meters, effects of c	offset, frequency resp	onse and	
	stability				
UNIT III	Linear Analog	Systems			15
	Circuit type of	OP – AMP 741,	Summing Amplifie	r, voltage	
	follower, curre	nt to voltage, volt	tage to current conv	verter,	
	Integrator, Diff	erentiator, Logarith	nmic Amplifier,		
	Antilogarithmic	e Amplifier			
UNIT IV		Analog Systems			15
	Comparators, D	Discriminators, sam	ple & hold circuits, Z	Zero	
	-	-	ier, waveform gener		
		,	and bistable mult		
	regenerative co	mparator (Schmitt	trigger), IC 555 time	er	
	S	uggested Readings:			
	Coughlin: Operat	ional Amplifiers and	l Linear Integrated Cir	cuits.	
	Schilling and Bel	ove: Electronic circi	uits Discrete and Integ	rated,	

Mcgraw Hill	
Millman and Halkias: Electronic Fundamentals & Applications, Tata Mcgraw Hill	
Millman and Halkias: Integrated Electronics K.R. Botkar: Integrated Circuits, Khanna Publishers G.K.	
Mithal and Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers	
Roychaudhary and Jain: Operational Amplifier & Linear Integrated Circuits	
V.K. Mehta: Electronics for Scientists & Engineers Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
 Same and Continues Francisco Mathedre	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major	

		MASTER IN	PHYSICS		
Programme:	MASTER IN PHYS	SICS	YEAR V	SEMESTER PAPER III b (specializatio paper	
		Subject: P	hysics		
Course code		C	ourse Title: Astrophysics	-I	
		Course Out	comes:		
	*		spherical astronomy, di extra solar planets. The		
		-	ifferent astronomical ir use of R& D sector.	struments such	n as:
Credits: 4				Core Compulso	ory
Max. Mark External E Internal as				Min. Passing Marks:	36
Total No. of	Lectures-Tutorials-P	ractical (in hours per	week): 4-0-0		
UNIT		TOPIC		No. of	
UNIT I				Lectures	
UNITI	system (equatoria	l and alt-azimuth)	where, Celestial coord altitude and azimuth,	right	
		-	le, sidereal time, mean olstice, seasons. Dist	ance	
	time, summer measurements:		<i>,</i>	ance	
		-	parallax, distances to op		
	clusters).	geometric means (paramax, distances to of		
UNIT II			, Study of planets and l forces, asteroids, met		
		origin, composition and their detection	on and dynamical evolu n.	tion,	
UNIT III	Telescopes: Basi	ic Optics, Types	of telescopes. Teles	cope 15	
			es, Infrared, Ultraviolet		
		•	Schmidt telescopes. S		
			ion of a simple op		
	telescopes. Active Sky charts and the		es in astronomical study.		
UNIT IV		<u>^</u>	ristics of detectors. Dete	ctors 15	
		,	regions. Working of Ch		
	•	e	, noise, quantum efficie	U C	
	<u>^</u>	•		atio,	
			imaging, photometry	and	
	spectroscopy. I	mportance of	space based astrono	omy.	
	Observational tech	hniques of astrono	mical sources from spac	e in	

electromagnetic spectrum.	
Suggested Readings:	
Abhyankar K.D. : Astrophysics, Galaxies and Stars	
VaidyanthBasu : An Introduction to Astrophysics	
Motz : Astrophysics	
K S Krishnaswamy : Astrophysics: A Modern Perspective	
W. M Smart: Spherical Astronomy	
Mark A. Garlick: The Story of the Solar System	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme:	MASTER IN PHYSICS YEAR V	SEMESTER IX
	Cold to set a Direction	PAPER III c
Course code	Subject: Physics Course Title: High Energy Physics- I	
Course coue	Course Outcomes:	
Students w	ould be able understand the complex properties and behaviour	of high energy
particles at	the microscopic level. This course would encourage students to	peruse higher
-	esearch in particle and high energy Physics.	
Credits: 4		Core
Max. Mar	ks: 100	Compulsory Min. Passing
External E	xam: 75	Marks: 36
	seessment: 25	
1 0tai 100. OI	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Quantization of Scalar Fields Lagrangian Formulatio	<i>,</i>
	Hamiltonian and momentum densities, Neutral and Charged scal	
	fields and their quantization, Momentum representation an	
	frequency splitting, Identification of various particle operator	
	Charge operator, Algebra of field operators, Invariant del	
	function and its representations, Covariant commutation relation	18
	and their properties.	
UNIT II	Quantization of Spinor Field Lagrangian formulation for Spin	
	field, Hamiltonian and momentum densities, Quantization	
	Spinor Field, Momentum representation and frequency splittin	
	Identification of various particle operators, Charge operator f	
	Spinor field, Algebra of Spinor field operators, Covariant form of	of
	anti-commutation relations.	
UNIT III	Quantization of Electromagnetic Field Classical electromagnet	
	field theory and its gauge formulation, Covariant Lagrangia	
	formulation for EM field, Quantization of EM field, Momentum	n
	representation and frequency splitting,	0 15
UNIT IV	1 1 <i>i i i</i>	of 15
	longitudinal, temporal and transverse photons, Covaria	
	commutation relations for EM potential operators, Problems wi	th
	temporal photons and Lorentz condition, Resolution through	
	Gupta- Bleular formulation	
	Suggested Readings:	
	L. Ryder : Quantum Field Theory	
	B.K. Agarwal : Quantum Mechanics and Field Theory	

F Mandel and Shaw: Quantum Field Theory	
P. Roman: Quantum Field Theory	
A. Das: Quantum Field theory	
M. E. Peskin, D.V. Schroeder : An Introduction to Quantum Field Theory	
B.S.Rajput : Advanced Quantum mechanics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN	N PHYSICS		1
Programme:	MASTER IN PHYSICS		YEAR V	SEMESTER
				IX PAPER III
	Subject:	Dhysias		d
Course code	·	Course Title: Sp	antroscopy I	
Course coue	Course O	-	Jeeli oscopy-1	
In this cour	se the students would study the varie		sers Laser spectro	oscopy and thei
applications	in science and technology. Knowledg stries and R&D sector .			
Credits: 4				Core Compulsory
Max. Mark External E Internal as				Min. Passing Marks: 36
	Lectures-Tutorials-Practical (in hours p	er week): 4-0-0)	1
UNIT	ТОРІ			No. of Lectures
UNIT I	Rotational Spectra Rotational spe			15
	populations, linear, symmetric, s	pherical and	asymmetric top	
	molecules, rotational selection rul	es for linear	molecules, Stark	
	effect in molecular rotation spect	ra, Molecular	rotation-nuclear	
	spin coupling, Positive and neg	ative charact	er of the wave	
	functions of linear molecules		ic-antisymmetric	
	character and statistical weight of	•	•	
	molecule.			
UNIT II	Vibrational Spectra Vibration spe	ectra of polya	tomic molecule	15
	coupling of rotation and vibratio			
	bands, Normal modes of vibra		-	
			•	
	Cartesian coordinates, normal co			
	coordinates, calculation of vibrat	-		
	field of H2O and CO2 molecule	·	<i>J</i> , <i>U</i>	
	and non-degenerate vibrations, inv	ersion doublir	ng, Quantized	
	Vibrational motion of polyatomic	molecules.		
UNIT III	Electronic Spectra Spectroscopy	of Diatomic	and Polyatomic	15
	Molecules: Coupling of Electron	nic and Rotat	ional motion in	
	Diatomic Molecules and Rotationa			
	- 1Σ transitions. Vibronic inter			
	theory for absorption spectrum of		-	
UNIT IV	Single vibronic level spectroscop	_		15
~	levels in benzene, Quantum yield	•		
			-	
	of nonnadiative turnetisms in 1			1
	of nonradiative transitions in mole		-	
	of nonradiative transitions in mole qualitative treatment of small mole for nonradiative transitions.		-	

C.N. Banwell: Fundamentals of Molecular Spectroscopy	
Walker and Stranghen: Spectroscopy Vol. I, II, & III	
Herzberg: Spectra of diatomic molecules Jeanne	
L. Mchale: Molecular Spectroscopy	
P.F. Bemath: Spectra of atoms and molecules	
J.M Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods: Course Prerequisites	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses:	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL),	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VIII with Physics as major Suggested Equivalent Online Courses:	

	MASTER IN PHYSICS	
Programme: MA		MESTER IX
	Subject: Physics	APER IV a
Course code	Course Title: Advanced Electronics- II	
	Course Outcomes:	
This course he	elps the students to gain basic ideas of the digital communic	ation, optical
communication	, memory and optoelectronic devices. The course is of much prac	ctical purpose
for the students	to learn advanced concepts of digital communication systems.	
Credits: 4		Core Compulsory
Max. Marks: External Exan Internal assess	1: 75	Min. Passing Marks: 36
	tures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Digital Communication	15
	Digital signal processing, Image processing (Basic ideas	
	only), Pulse Modulation systems, Pulse Amplitude	
	Modulation, Pulse Width Modulation, Pulse position	
	modulation, Pulse code modulation, Delta modulation	
	Frequency division multiplexing (FDM), Basic idea of digital	
	telemetry	
UNIT II	Optical communication	15
	Principle of optical communication, Different modes of	
	propagation of E. M. Wave through optical fibre, Brief	
	concept, classification of fibres and ray path, Advantages of	
	multimode fibres and cladding, Optical Fibre connectors,	
	Optical Fibre communication Receiver, Brief Introduction,	
	Signal path through optical data link, Block diagram of	
	optical Receiver, Advantages of optical communication.	
UNIT III	Optoelectronic devices	15
	Light propagation in cylindrical wave guide, Bulk and thin	1.0
	films. Photoconductive devices (LDR), charge coupled	
	devices (CCD), LCDS.	
UNIT IV	Memory devices	15
	Memory devices, static and dynamic random access	
	memories SRAM and DRAM, CMOS and NMOS,	
	nonvolatile-NMOS, magnetic, optical and ferromagnetic	
	memories.	

Suggested Readings: Coughlin: Operational Amplifiers and Linear Integrated Circuits.		
Mchilling and Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill		
Millman and Halkias: Electronic Fundamentals & Applications, Tata Mcgraw		
Millman and Halkias: Integrated Electronics		
K.R. Botkar: Integrated Circuits, Khanna Publishers		
G.K. Mithal and Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers		
Malmstadt and Enke: Electronics for scientists		
Taub and Schilling: Principal of communication systems		
Simon Gayukti: Communication Systems		
Martin S. Roden: Analog & Digital Communication Systems		
V. K. Sarkar and D. C. Sarkar: Optoelectronics and Fibre Optic Communication.		
Can be opted by		
Bachelor in Science with Physics as major subject		
Suggested Continuous Evaluation Methods:		
Course Prerequisites Passed Semester VIII with Physics as major		
Suggested Equivalent Online Courses:		
1. MIT Open Learning - Massachusetts Institute of Technology,		
https://openlearning.mit.edu/		
2. National Programme on Technology Enhanced Learning (NPTEL),		
https://www.youtube.com/user/nptelhrd		
3. SwayamPrabha - DTH Channel,		
https://www.swayamprabha.gov.in/index.php/program/current_he/8		

	MASTER IN PHYSICS				
Programme: MAS	TER IN PHYSICS	YEAR V	SEMESTER IX		
	Subject: Physics		PAPER IV b		
Course code	Course Title: Ast	rophysics –II			
	Course Outcomes:				
The Course will p	The Course will provide the deeper understanding of the radiative transfer and the interaction				
of radiation with	matter. It would be important to understa	and the physi	cs of the death of		
stars. This study	is crucial for the deeper knowledge of the	neutron stars,	, white dwarfs and		
black holes. Their	study provides the insight for the gravitation	al waves.			
Credits: 4			Core Compulsory		
Max. Marks: 10			Min. Passing		
External Exam: Internal assessm			Marks: 36		
	res-Tutorials-Practical (in hours per week): 4-0-0				
	TODIC				
UNIT UNIT I	TOPIC Radiation transfer: Definitions of specif	ia intensity	No. of Lectures		
UNITI	-	-	15		
	mean intensity, flux and energy density; radiation transfer; solutions in some spe	-			
	· · · · ·				
	optical depth; Thermal emission; Blackbo	•			
	and its characteristics; Kirchoff's law; Ein	istein			
UNIT II	coefficients.		15		
UNITI	Interior Properties of Stars Hydrostatic	· ·	15		
	Virial theorem, Polytrophic indices, Lan				
	equation LTE, Radiative equilibrium				
	condition of convective and radiative	-			
	Continuous spectra of stars, Stellar op	-			
	darkening, line blanketing, theory of Fraur	noter lines,			
	curve of growth and line broadening.	-lue ale - 1-1	15		
UNIT III	Elementary theory of white dwarfs, Chan		15		
	limit for white dwarf stars, neutron stars th				
	properties, Pulsars, black holes, low mediu				
	and high mass stars, death of high mass star	8,			
UNIT IV	supernova remnants	of ACNC	15		
	AGNs and Quasi-stellar Objects Theory		1.0		
	Syferts, quasars and their energy gene redshift anomaly. Different AGN models,				
	and jets, Gamma ray bursts.	Taulo 100es			
	Suggested Readings:				
At	bhyankar K.D.: Astrophysics, Galaxies and Stars				
Va	uidyanth Basu: An Introduction to Astrophysics				
	otz: Astrophysics A. R. Choudhuri : Astrophysics ysicists	s for			
	-				

B. D. Abhyankar : An Introduction to Astrophysics	
T. Padmanabhan : Astrophysical Processes	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER IX PAPER IV c
	Subject: Physics	
Course code	Course Title: High Energy Physics-	II
properties.The stuled to the detection	Course Outcomes: d provide the knowledge of basic building blocks of matt dents will also be able to know the complicated theory of Higg n of God particle in LHC experiment in the year 2012. It would t to work in the field of HEP.	s mechanism which
Credits: 4		Core
		Compulsory
Max. Marks: 10 External Exam: Internal assessn	75 nent: 25	Min. Passing Marks: 36
I otal No. of Lectu	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	Lie Groups and Lie Algebra Symmetries, Groups an conservation laws, Lie groups and their generator representation of the groups, Lie Algebra, Differer dimensions and parameter groups-their generators an algebra, Simple and semi-simple Lie Algebra, Standar form of Lie Algebras, Root diagrams for groups of different rank.	r, ht d
UNIT II	Quark Model Fermi Yang model, Sakata mode Necessity of Quark model, Shortcomings of Eight fol way, Gell - Mann Zweig model, Quark-Lepto symmetry and structure of Hadrons, Need of charr quantum number and charmed quark, Elementary ide of charm, bottom and top quarks, Baryon magneti moments in quark model, Experimental status of Quarks	d n n a c
UNIT III	Gauge Field Theories Concept of gauge fields and gaug connections, Principle of gauge invariance, Global and local Abelian gauge invariance, U(1) gauge invariance o QED.	
UNIT IV	Yang- Mills gauge field, Non-Abelian gauge field theor (SU(2) case), Concept of spontaneous symmetry breaking and Goldstone Bosons, Higgs Mechanism with physical examples and mass generation for gauge fields	y
.F	Suggested Readings: . Close : Quarks and Patrons	
D	C. Cheng and O Neil : Elementary Particle Physics Cheng and G.LF Li : Gauge Field Theory	
Ι	Aitchison and A.J. Hey : Gauge theories in Particle Physics	
Н	Georgi : Lie Algebras in particle Physics	

D. B. Lichtenberg : Unitary Symmetry and Elementary Particles, Academic Press, 1978	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MAS	TER IN PHYSICS YEAF	RV	SEMESTER IX PAPER IV d
	Subject: Physics		I
Course code	Course Title: Spectrosc	opy -II	
	Course Outcomes: sudents would study the various types of lasers, Laser nce and technology. Knowledge acquired by the course nd R&D sector.		
Credits: 4			Core Compulsory
Max. Marks: 100 External Exam: Internal assessm	75 ent: 25		Min. Passing Marks: 36
Total No. of Lectur	es-Tutorials-Practical (in hours per week): 4-0-0		1
UNIT	ТОРІС		No. of Lectures
UNIT I	Radiation and Matter Interaction of radiat	ion with	15
	matter, Einstein quantum theory of radiation, E coefficients, Momentum Transfer, Lifetime, T optical frequencies, Coherence Spatial and temp Monochromaticity, kinetics of optical absorption width, line broadening mechanisms.	heory of poral and	
UNIT II	Basic Elements of Lasers Spontaneous of Stimulated emission, Possibility of amplificati pumping, ,Population Inversion, Three and for scheme, Threshold condition, rate equations, A resonators & laser modes, gain saturation.	on, laser our level	15
UNIT III	Type of Lasers Different types of lasers, gas las Ne laser, N2 & CO2 lasers dye lasers, solid stat Nd-YAG, semiconductor lasers. Tunability of las	te lasers,	15
UNIT IV	Applications of Lasers Basic application of laser spectroscopy, laser co and trapping of atoms etc.		15
.N.	Suggested Readings: Banwell: Fundamentals of Molecular Spectroscopy		
Walker and Stranghen: Spectroscopy Vol. I, II, & III			
Herzberg: Spectra of diatomic molecules			
	nne L Mchale: Molecular Spectroscopy		
	Bemath: Spectra of atoms and molecules		
	Holias: Modern Spectroscopy		
К.	Thyagrajan and A.K. Ghatak: Lasers: Theory and appli	cations	

A Yariv: Quantum Electronics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme:	MASTER IN PHYSICSYEAR IV	SEMESTER IX/PAPER V
	Subject: Physics	
Course code		
The stadest	Course Outcomes:	lifferent fields of
	will have adequate knowledge to perform the experiments of	different fields of
	n clear understanding of the theory behind the experiment.	·
Physics	know about various electronics experiments and some advanced	experiments in
Credits: 4		Core
Max Max		Compulsory
Max. Mark External E		Min. Passing Marks: 36
	sessment: 25	
Total No. of	Lectures-Tutorials-Practical (in hours per week): 0-0-4	
UNIT	List of Experiments	No. of Lectures
	1. Verification of Richardson's law.	
	2. Study of ESR spectra of a given sample.	
	3. Hall Effect	
	4. RCS Spectrometer	
	5. gamma ray spectrometer	
	6. Radio Receiver	
	7. e by Millikan's oil drop method.	
	8. Temperature dependence of diode characteristics.	60
	9. Elastic constants of a cubic crystal by ultrasonic waves.	
	10. Study of Multivibrators .	
	11.Study of transistor amplifier cum feedbac amplifiers.	k
	-	ру
	13. Study of different FETs and MOSFETs.	
	14. Study of Thermo luminance .	
	15. Study of VTVM.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Bachelor in Science with Physics as major subject	
1 17:4	Suggested Equivalent Online Courses:	
1. Virtu	ual Labs at Amrita Vishwa Vidyapeethan	n,

https://vlab.amrita.edu/?sub=1&brch=74	
2. Digital Platforms /Web Links of other virtual labs may be suggested /	
added to this lists by individual Universities	

	MASTER IN PHYSICS		
Programme: MAS	STER IN PHYSICS	YEAR V	SEMESTER X PAPER I
	Subject: Physics		
Course code	Course Title: Nu	clear Physics	
T	Course Outcomes:		1 0 1
	udents would know about the general proper		
	active decay and nuclear reactions. The cou		
•	y out research in the field of nuclear physi	cs, high energy j	physics, nuclear
astrophysics, nuc	elear reactions and applied nuclear physics.		
Credits: 4			Core
Cicuits. 4			Compulsory
Max. Marks: 10			Min. Passing
External Exam: Internal assessm			Marks: 36
	ures-Tutorials-Practical (in hours per week): 4-0-	0	
UNIT	TOPIC		No. of
UNIT I	Nuclear Properties and Nuclear Mode	la Concenta of	Lectures 15
UNITI	Nuclear Properties and Nuclear Mode	*	15
	Atomic Nuclear-Size, Shape, charge dist	-	
	parity, magnetic moment; electric quad	•	
	binding energy; semi-empirical mass		
	nuclei, Liquid drop model, Experiment		
	shell effects, Shell model, Magic num		
	coupling, Single particle shell model-its	validity and	
	limitations; collective model.		1.5
UNIT II	Nuclear Forces and Nuclear Interacti	•	15
	Deuteron and nuclear level properties, nu		
		nucleon-nucleon	
	scattering, Yukawa's Meson theory of		
	Spin dependence and charge independence	e of nuclear	
	forces.	. .	1.5
UNIT III	Nuclear Reactions Kinds of nuc	,	15
	Conservation laws; Nuclear reaction Kin		
	particle reaction spectroscopy; neutro		
	nuclear cross-section; compound nu		
	transmutations, continuum theory of r		
	Nuclear fission, Chain reactions, Nuclear	tusion,	
	Thermonuclear reactions.		
UNIT IV	Nuclear Decays Basic understanding of	•	15
	Fermi theory of beta decay, selection	-	
	Neutrino hypothesis, Parity violation in be	eta decay, K	
	capture and internal conversion.		

Suggested Readings:	
E. Burcham: Nuclear Physics	
L. Burenam. Nuclear Thysics	
Ervin Kapalan: Nuclear Physics	
Roy & Nigam: Nuclear Physics	
S. N. Ghoshal: Atomic and Nuclear Physics	
A.Enge: Nuclear Physics	
.D. Evans: Nuclear Physics	
E. Segre: Nuclei and Particles	
H.M. Agrawal: Nuclear Physics, PHI Learning	
Can be opted by	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current he/8	
https://www.swayampraona.gov.n/mdcx.php/program/current_ne/o	

	MASTER IN PHYSICS			
Programme: MAS	STER IN PHYSICS YEAR V	SEMESTER X		
	Subject Divejec	PAPER II		
Course code	Subject: Physics Course code Course Title: Digital Electronics and Computer Architecture			
	Course Outcomes:	in chitecture		
The course ena	bles student to get knowledge about Digital Electronic	es and Computer		
Architecture. Th	e course includes Fundamentals of Digital Circuit, Comp	outer Organization		
and Architecture	e, Instruction formats & Microprocessor, Data Communi	cation, Computer		
	tions. The course helps student to work for the development	-		
	he industry and various Government organizations.			
Credits: 4		Core Compulsory		
Max. Marks: 10	00	Min. Passing		
External Exam: Internal assessm		Marks: 36		
	res-Tutorials-Practical (in hours per week): 4-0-0			
UNIT	TOPIC	No. of Lectures		
UNIT I	Digital Circuit & Microprocessor Elementary idea of	15		
	combinational and sequential circuits, Overview of			
	Microcomputer organization and operation,			
	Microprocessor evolution and types, Fundamental			
	knowledge of Microprocessor (8085/8086), Architecture			
	and its operation, Basic idea of logic devices for			
	interfacing 8085/8086.			
UNIT II	Computer Organization and Architecture Central	15		
	Processing Unit, Computer organization, Instruction			
	formats (e.g. Three address, Two address etc), addressing			
	modes, Timing diagram, Interconnection of different			
	units, I/0 to processor and processor to memory			
	communication, Interrupt structures, Multiprogramming,			
	processor features RISC, CISC, cache memory, real and			
	virtual memory.			
UNIT III	Data Communication Computer and Communications,	15		
	Need for communication networks, Internet and World			
	Wide Web, communication protocols, Local Area			
	Networks, Interconnecting networks, Future of Network			
	Technology.			
UNIT IV	Computer Network Characteristics of communication	15		
	channels, Allocation of Channels, Physical			
	Communication media, Public Switched Telephone			
	Network, Cellular Communication Path, ATM networks			
	forris Mano : Computer system Architecture, (PHI) (Eastern			
E	conomy Edition)			

	V. Rajaraman : Fundamentals of computers, (Prentice Hall of India)
	MorriesMano : Computer system architecture, (Estern Economy Edition)
	B. Ram: Computer fundamental-architecture and organization(New Age International Publishers)
	TenanBomm : Computer Network
	Ramesh Gaonkar : Microprocessor, Architecture, programming and application with the 8085
	HafizerRehaman: Microprocessor programming and Interfacing Intel 8085 and 8086
	Can be opted by
В	achelor in Science with Physics as major subject
	Suggested Continuous Evaluation Methods:
	Course Prerequisites
	Passed Semester IX with Physics as major
	Suggested Equivalent Online Courses:
1. MIT Open L	earning - Massachusetts Institute of Technology,
https://openlear	ning.mit.edu/
2. National Pro	gramme on Technology Enhanced Learning (NPTEL),
https://www.yo	utube.com/user/nptelhrd
3. SwayamPrab	ha - DTH Channel,
https://www.sw	vayamprabha.gov.in/index.php/program/current_he/8

		MASTER IN PHYSICS	
Programme: MAS	TER I	N PHYSICS YEAR V	SEMESTER X
		Subject: Physics	PAPER III A
Course code		Course Title: Advanced Electronics-III	
		Course Outcomes:	
-		students to gain advanced concepts of power sup	
microwave produ	uction	and microwave generation which has wide applicat	ions in modern
industry and Rese	arch.		
Credits: 4			Core
Max. Marks: 10	<u>n</u>		Compulsory
External Exam:			Min. Passing
Internal assessm			Marks: 36
Total No. of Lectur	res-Tute	orials-Practical (in hours per week): 4-0-0	
UNIT		TOPIC	No. of
			Lectures
UNIT I		r Supply Regulation	15
		omechanism, regulation using OA, Zener reference	
		e, The 723 regulator current regulator, short circuit	
		ver load protection, Precision rectifier,	
UNIT II		gulated power supply.	15
		e terminal voltage regulations, dual Polarity regulated	
	-	r supplies using 78 XX and 79 XX series regulators	
		c ideas only). Switched mode power supply (SMPS),	
		e filter , PLL	
UNIT III		owave production	15
		ation of convectional electronics devices at UHF	
		wave frequencies, Principle of velocity modulation	
		x klystron. Theory and uses an of cavity magnetror	1
		& GUNN Diode, Detection of microwave	
		urement of power	15
UNIT IV		owave Communication	15
		ntages and Disadvantages of Microwave transmission	
		n free space, propagation of microwaves, atmospheric	
		ts on prorogation, Fresnel zone problem, ground	I
		tion, antennas used in microwave communication	
	system		
		Suggested Readings:	
Co	oughlin	Operational Amplifiers and Linear Integrated Circuits.	
Schilling & Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill			
M	illman d	&Halkias: Electronic Fundamentals & Applications, Tata	

	Mcgraw Hill	
	Millman & Halkias: Integrated Electronics	
	.R. Botkar: Integrated Circuits, Khanna Publishers	
	V.K. Mithal& Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers	
	Malmstadt &Enke: Electronics for scientists	
,	Taub & Schilling: Principal of communication systems	
•	Simon Gayukti: Communication Systems	
	Martin S. Roden: Analog & Digital Communication Systems	
	Ferman: Electronic & Radio Engineering	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open L	earning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/		
2. National Programme on Technology Enhanced Learning (NPTEL),		
https://www.youtube.com/user/nptelhrd		
3. SwayamPrab	oha - DTH Channel,	
https://www.sw	vayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MAS	TER IN PHYSICS YE.			
		PAPER III B		
Subject: Physics Course code Course Title: Astrophysics-III				
Course code	Course Outcomes:	IIysics-111		
This course prov	ides the basic physical mechanisms about the solar acti	vities, which will help		
-	- Earth connection. This study provides the knowledg	- -		
-	tars and the distribution in Galaxies.			
Credits: 4		Core Compulsory		
Max. Marks: 10 External Exam:	0	Min. Passing		
Internal assessm		Marks: 36		
	res-Tutorials-Practical (in hours per week): 4-0-0	I		
UNIT	TOPIC	No. of Lectures		
UNIT I	Sun as a star : Solar spectrum, effective temperatu			
		nb		
	darkening; energy source: Kelvin time scale, nucl			
	fusion; energy transport in the sun, Thoms			
	scattering, mean free path, photon diffusion inside	the		
	Sun; photosphere, chromosphere, transition region,			
	corona.			
UNIT II	Quiet and Active Sun, Sunspots, their formation a			
		lar		
	filaments/prominences, Coronal mass ejection			
	(CMEs), Solar wind, Different type of solar eruptic	ns		
	models, Coronal heating, Origin of solar cycle.			
UNIT III	General idea of Heliosesmology, Astroseismolog			
	Description about p-mode and g-mode oscillatio			
	Introduction to variable stars and their locations in H			
	diagram. Classifications, Cephieds variables (class			
	Cephieds and W Virginis stars), RR Lyrae stars, M	ira		
	variables, Eruptive variables, Flare stars, Nebular			
	variables, Supernovae, roAP stars	. 15		
UNIT IV	The Milky way and Other Galaxies Distributions			
	stars in the Milky way, Morphology, Kinemati			
	Interstellar medium, Galactic center. External galaxi			
	Types of galaxies: spirals, ellipticals and irregula			
	Hubble classification for galaxies, 21cm line, rotati	on		
	cure, dark matter. Suggested Readings:			
C+				
51	ix: The Sun: An Introduction			
K	D. Abhyankar : Astrophysics: Stars and Galaxies			

T. Padmanabhan : Galaxies and Cosmology Motz : Astrophysics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MAS	STER IN PHYSICS YEA	AR V	SEMESTER X PAPER III C	
Subject: Physics				
Course code	Course Title: Hight Ene	rgy Phy	sics-III	
	Course Outcomes:			
	d provide the knowledge of advanced concepts of HE			
able to know th	e complicated theory of Relativistic propagators, S n	natrix e	expansion ans S	
matrix formulati	on of QED. It would open doors for the students wh	o want	to work in the	
field of HEP.				
Credits: 4			ore Compulsory	
Max. Marks: 10 External Exam: Internal assessn	75	N N	Ain. Passing Aarks: 36	
	ures-Tutorials-Practical (in hours per week): 4-0-0			
UNIT	ТОРІС		No. of	
UNIT I	Relativistic Propagators Relativistic propagators	using	Lectures 15	
		•		
	quantized formulation of free fields, Propertie			
	quantized scalar fields(Real and complex cases), A	•		
	of field operators, covariant form of the field op			
		Meson		
	propagator and its characteristics, Properties of qua			
	spinor fields, Algebras of spinor field operator, Co			
	form of anti-commutation relations, Fermion prop	-		
	and its characteristics, properties of quantized EM			
	Covariant commutation relations of EM field ope			
	Photon propagator and its characteristics, EM interact			
	terms of radiation field and instantaneous coulomb field	elds.		
UNIT II	Operator Products, Feynman Propagators and S-	matrix	15	
	Expansion Various type of operator products (N	ormal,		
	Dyson products and Chronological T-products),	Wick's		
	theorem, Feynman propagators and its pl	hysical		
	interpretation, Interacting fields, S-Matrix formulation	on as a		
	perturbative series solution of collision processes, D	yson		
	expansion of S-matrix.			
UNIT III	S-matrix Formulation of QED Interaction Hamilton	ian in	15	
	QED, Reduction of S-matrix for the case of	QED,		
	Representation and description of various first and s	- ·		
	order processes in QED using S-matrix expansion.			
UNIT IV	Compton scattering, Moller scattering, Bhabha scat	tering	15	
		acuum	-	
	configuration in QED, Feynman diagrams and Feynm			
	Rules in QED.	all		

	Suggested Readings:	
Ryc	der : Quantum Field Theory	
B.K	. Agarwal: Quantum Mechanics and Field Theory	
F M	landel and G. Shaw: Quantum Field Theory	
Ron	nan: Quantum Field Theory	
A. D	Das: Quantum Field theory	
M. E Theo	E. Peskin, D.V. Schroeder: An Introduction to Quantum Field ory	
	Can be opted by	
Back	helor in Science with Physics as major subject	
S	uggested Continuous Evaluation Methods:	
	Course Prerequisites	
1	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses:	
1. MIT Open Learn	ning - Massachusetts Institute of Technology,	
https://openlearning	g.mit.edu/	
2. National Program	mme on Technology Enhanced Learning (NPTEL),	
https://www.youtub	be.com/user/nptelhrd	
3. SwayamPrabha -	- DTH Channel,	
https://www.swaya	mprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER X
		PAPER III D
Course code	Subject: Physics Course Title: Spectroscopy-III	
Course code	Course Outcomes:	
In this course the	e students would study the various types of lasers, Laser s	spectroscopy and
their applications	in science and technology. Knowledge acquired by the c	ourse will be of
much use for vari	ous industries and R&D sector .	
Credits: 4		Core
Max. Marks: 10	Δ	Compulsory Min. Passing
External Exam:	75	Marks: 33
Internal assessm		
I otal No. of Lectu	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Molecular Symmetries and Group Theory Symme	etry 15
	Properties of molecule: symmetry element, symmetry	2
	operation and point group, character table, Group theo	•
	representation of a group, reducible and irreduci	
	representations, LCAO coefficient of a polyatomic molect	ule,
	Huckel approximation, overlap and resonance integrals,	
	Wheal's approximation.	
UNIT II	Mechanism of Fluorescence Emission and decay mechanis	
	radiative & nonradiative processes, Jablonski diagram, Ka	
	rule, Fluorescence lifetime and quantum yield, stoke sh	
	Mirror image rule, Oscillator strength, Fluoresce	nce
	polarisation and Anisotropy, Time scale of molecular	
	processes in solution .	
UNIT III	Instrumentation for Fluorescence Spectroscopy Excitat	
	and Emission spectra, An ideal spectrofluorome	
	Distribution in Excitation & Emission spectra, Light source	es,
	Monochromator,	
UNIT IV	Optical filters, Photomultiplier tubes, Photon counting vers	
	Analog detection of Fluorescence Corrected Fluorescence	
	spectra, Measurement of Fluorescence lifetime	
Ba	Suggested Readings: arrow G.M: Introduction to Molecular spectroscopy; McgrawH	Till
He	erzberg G: Infrared and Raman Spectra of Polyatomic Molecul	es;
V	on Nostrand Herzberg G: Spectra of Polyatomic Molecules;	
or	Nostrand J. R. Lackowicz: Principle of Fluorescence	

Spectroscopy King G: Molecular Spectroscopy	
King G.W: Spectroscopy and Molecular Structure	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: M.	ASTER IN PHYSICS YEAR V	SEMESTER X PAPER IV A
	Subject: Physics	TALLATVA
Course code Course Title: Advanced Electronics-IV		
	Course Outcomes:	
This course h	elps the students to gain basic ideas of the construction	and working of
electronic dev	rices and circuits. The course includes the study of com	binational circuits,
sequential circ	euits and analog computation. The course is of much practic	cal purpose for the
students to lea	rn basics of digital electronics. The digital electronics has w	vide applications in
computing, pro	ocess control, signal processing, communication systems,	digital instruments
etc.		-
Credits: 4		Core
Max Manlar	100	Compulsory
Max. Marks: External Exa	100 m: 75	Min. Passing Marks: 36
Internal asses	ssment: 25	1/1ai K5. 00
Total No. of Lee	ctures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Analog Computation	15
	Solution of ordinary linear differential equations with constant	nt
	coefficients, Operation modes of analog computers, repetitiv	
	operation of computers, Time scaling, amplitude scaling,	
	Generation of functions, Simulation of time varying systems.	
UNIT II	Boolean algebra	15
	Canonical forms of Boolean, functions, Simplification	of
	Boolean functions (K-map, Tabulation method), don't can	
	conditions. Digital logic families Digital to Analog and Analog t	
	Digital converters.;	
UNIT III	Combinational Circuits	15
	Adders & Subtractors, Magnitude comparator, Code converter	-
	Parallel adders, Encoders, Decoders, Multiplexer	
	Demultiplexers, Parity bit generator and checker, Read only	.,
	memory (PROM, EPROM), P.L.A.	
UNIT IV	Sequential Circuits	15
	Sequential logic- Memory element, RS, JK, JKMS, T type an	
	Edge triggered Flip flop; Registers; Shift register; Counters-	
	synchronous and Asynchronous; The memory uni	
	Semiconductor Random Access Memory; Inter-register transfe	
	Arithmetic; Logic and Shift Micro-operation; Fixed point an	
	floatation point data.	
	Suggested Readings:	
	Morris Mano: Digital Logic & Computer Design	
	Rajaraman: Introduction to Digital Computer design	
	Malvino& Leech Sloan: Computer Hardware & Organization	

V. Rajaraman: Analog Computation & Simulation Integrated Circuits.	
Schilling & Belove: Electronic circuits Discrete and Integrated, Mcgraw Hill	
Millman &Halkias: Electronic Fundamentals & Applications, Tata Mcgraw Hill	
Millman & Halkias: Integrated Electronics	
K.R. Botkar: Integrated Circuits, Khanna Publishers	
G.K. Mithal& Ravi Mittal: Electronic Devices & Circuits, Khanna Publisher	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme:	MASTER IN PHYSICSYEAR V	SEMESTER X
		PAPER IV B
Course code	Subject: Physics Course Title: Astrophysics-IV	
Course code	Course Outcomes:	
This course	will provide the basic properties of stars, birth and the evolutio	n of stars. In
	his, it provides the deep understanding about the star clusters and	
	g. luminosity and mass function, mass-luminosity relations etc.	ulen
Credits: 4	g. runniosity and mass renotion, mass runniosity relations etc.	Core
Credits. 4		Compulsory
Max. Mark		Min. Passing
External Ex Internal ass		Marks: 36
	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
10101110.011		
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Basic Properties of Stars: Mass, radius, distance, luminosity	7, 15
	temperature, magnitude system, Wien-displacement colou	ır
	indices, filters, H-R diagram, classification of stellar spectra,	
	luminosity classification, stellar motion, stellar populations	
UNIT II	Star Formation and Stellar Evolution: Birth of stars, protostar, Pre	e- 15
	main sequence evolution: Jeans instability, star formation	n,
	Hayashi track, Zero age main sequence (ZAMS), Post-mai	n
	sequence evolution: Core He burning, shell burning, red giar	
	phase, planetary nebulae, white dwarf physics, electro	
	degeneracy pressure, energy generation in stars – gravitationa	al
	contraction, pp chain, CNO cycle and triple alpha process, stella	
	life, cycles-Premain sequence, main sequence, giants.	
UNIT III	Star Cluster and their Properties : Open clusters, globula	ar 15
	clusters and the galaxy itself are examples of 'stellar systems	
	crossing time; mean potential and total potential energy in	
	constant density sphere; equation of motion of N-body stella	
	system; total momentum, angular momentum and energy a	
	constants of motion, stellar population, population I and II typ	
	objects, inter-stellar extension, reddening determination from	
	color color diagram, age and distance determination of sta	
	clusters, luminosity function, mass function, mass segregation,	,
	mass-luminosity relation.	15
UNIT IV	Cosmological Models: Universe at large scales – Homogeneit	-
	and isotropy – distance ladder – Newtonian cosmology	
	expansion and redshift - Cosmological Principle - Hubble's law	
	Robertson-Walker metric - Observable quantities - luminosit	У
	and angular diameter distances - Horizon distance- Dynamics o	f
	Friedman- Robertson-Walker models: Friedmann equations.	

Suggested Readings:	
Abhyankar K.D. : Astrophysics, Galaxies and Stars	
Vaidyanth Basu : An Introduction to Astrophysics	
Motz : Astrophysics	
T. Padmanabhan : Stars and Stellar Systems	
L Kutner: Astronomy: A Physical Perspective	
Can be opted by	
Can be opted by	
Bachelor in Science with Physics as major subject	
Bachelor in Science with I hysics as major subject	
Suggested Continuous Evaluation Methods:	
Suggesten Continuous Liturauton Artenousi	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current he/8	

	MASTER IN PHYSICS		
Programme: MAS	TER IN PHYSICS	YEAR V	SEMESTER X PAPER IV C
	Subject: Physics		
Course code	nergy Physics-IV		
	Course Outcomes:		
The course woul	d provide the knowledge of some more a	dvanced concepts	s of HEP. The
students will also	be able to know the detailed theory of we	eak interactions,	electromagnetic
interactions and st	trong interaction.		
Credits: 4			Core
Max Manka 10	1		Compulsory
Max. Marks: 10 External Exam:			Min. Passing Marks: 36
Internal assessm			
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	ТОРІС		No. of
UNII	IOPIC		No. 01 Lectures
UNIT I	Theory of Weak Interactions Classific	ation of weak	15
	interaction in terms of Leptonic, Semi-lep		
	Leptonic weak Decays, Current-Current		
	VA theory, Intermediate Vector Boson		
	Conservation of Vector Current (CVC) H	· / ·	
	Component Theory of Neutrino, W and Z		
	gauge bosons.	bosons as weak	
UNIT II	Theory of Electromagnetic Interactions E	lastron Desitron	15
	Annihilation into Hadrons, Electron- Nuc		15
	Rutherford and Mott scattering, Electron		
		e	
	factors of Hadrons, Structure of nucleo	•	
	Idea of Unification of Fundamental Intera		
	reference to standard model of electro weal		15
UNIT III	Strong Interactions Paradoxes of Naive		15
	Need of color quantum Number for Quar		
	and Gluons, Quantum Chromodynamics, H	10n-INucleon	
	Scattering,		15
UNIT IV	Spin Classification of Hadrons and Reg		15
	Asymptotic freedom and Perturbative QCI	· •	
	indication for quarks and gluons, String m	odel of hadrons	
	and confinement of Quarks.		
τ.	Suggested Readings:		
	Close : Quarks and Patrons I.J. Aitchison and A. cories in Particle Physics F. Haltzin& A.D. Mart		
	ptons		
	-		
	H. Perkins : Introduction of High Energy Physics	s, Cambridge	
Ur	iversity Press 2000		

P.Cheng and G.LF Li : Gauge Field Theory	
ED Commins : Weak Interactions	
D.C. Cheng and O Neil: Elementary Particle Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MA	STER IN PHYSICS	YEAR V	SEMESTER X
	Subject: Physics		PAPER IV D
Course code	Course Title: Sp	ectroscopy-IV	
	Course Outcomes:		
In this course t	he students would study the various types of	f lasers, Lase	r spectroscopy and
their application	is in science and technology. Knowledge ac	quired by the	course will be of
much use for var	rious industries and R&D sector .		
Credits: 4			Core Compulsory
Max. Marks: 1	00		Min. Passing
External Exam			Marks: 36
Internal assess	nent: 25 ures-Tutorials-Practical (in hours per week): 4-0-)	
		,	
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Ultrashort Pulses and Dynamics of		
	Production of giant pulse, Q-switching b	y different typ	bes
	of shutters, giant		
	pulse dynamics, laser amplifiers, mode	-	e
	pulling, ultra shot pulses, hole burning, ho		
UNIT II		eration, pha	
	matching, second harmonic generation,		
	generation, optical mixing, parametric gen	neration of light	nt,
	self focusing of light.		
UNIT III	Multi Photon Processes Multi quantum	*	c 15
	effect, two photon processes, frequency u	-	
UNIT IV	Stimulated Raman effect, coherent stoke		les 15
	Raman scattering, photo acoustic spectros	copy	
Γ	Suggested Readings: D. Levenson: Introduction to non-linear laser spec	troscopy	
E	B.Laud: Laser and non-linear optics		
v	elto: Lasers Demtroder: Laser Spectroscopy		
	Can be opted by		
В	achelor in Science with Physics as major subje	ct	
	Suggested Continuous Evaluation Methods:		
	Course Prerequisites		
	Passed Semester IX with Physics as major		
	Suggested Equivalent Online Courses:		
1. MIT Open Le	earning - Massachusetts Institute of Technolog	gy,	

https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd	
3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme		SEMESTER X
		PRACTICAL
Course cod	Subject: Physics le Course Title: PRACTICAL	
Course cou	Course Outcomes:	
The stude	nt will have adequate knowledge to perform the experiments of	different fields of
physics wi	th clear understanding of the theory behind the experiment.	
Student w	ill know about advanced experiments based on their specialization	paper.
Credits: 4		Core
Max. Mai	·/s· 100	Compulsory Min Dessing
External 1		Min. Passing Marks: 36
	assessment: 25	
Total No. o	f Lectures-Tutorials-Practical (in hours per week): 0-0-4	
UNIT	ТОРІС	No. of Lectures
	List of Experiments: (a) Advanced Electronics	
	1. Study of regulated power supply (723).	
	2. Study of operational amplifier (741).	
	3. Study of Timer (555). 4. A to D and D to A converter	
	5. 1 of 16 Decoder/Encoder	
	6. Study of Multiplexer/Demultiplexer	
	7. Study of Logic gates (Different types)	
	8. Study of Comparator and Decoder	
	9. Study of amplitude and frequency modulations and	
	demodulations.	60
	10. Study of different flip- flop circuits (RS, JK, Dk type, T-	
	type, Master slave).	
	11. Study of Digital combinational and sequential circuits	
	12. Study of Microprocessor (8085) 13. Study of SCR, DIAC,	
	TRIAC	
	14. Study of IC- Based Power supply	
	15. Microwave experiment.	
	16. Shift Registers	
	17. Fiber Optics communication	
	List of Experiments: (b) Astrophysics	60
	1. Study of Hubble's law (from given data)	
	2. Study of constant density neutron star	
	3. Study of the static parameters of a Neutron Star model with	1
	inverse square density distribution	
	4. Study of star cluster from a given data	
	5. Study of Extinction coefficients	

6. Study of variability of stars	
List of Experiments: (c) High Energy Physics 1. Characteristic curve of a GM Detector and verification of inverse square law.	60
2. Characteristic curve of a GM Detector and Absorption coefficient of a using aluminum GM Detector.	
3. Energy spectrum of gamma rays using gamma ray spectrometer.	
4. Absorption coefficient of aluminum using gama-ray spectrometer.	
5. Characteristics of Scintillation Detector.	
6. Study of gama-gama unperturbed angular correlations.	
7. Study of particle tracks using a Nuclear Emulsion Detector.	
8. Classification of tracks in interaction with Nuclear Emulsion and determination of excitation energy.	
List of Experiments: (b) Spectroscopy 1. Study of the vibrational levels of Iodine.	60
2. Measurement of the fluorescence spectra of Uranyl Nitrate Hexahydrate.	
3. Determination of the intrinsic life time for a dye molecule.	
4. Determination of change in dipole moment in excited state using Solvatochromic shift method.	
5. Measurement of non radiative decay rate for a known sample.	
6. Determination of the quantum yield of known samples using steady state spectroscopy.	
Can be opted by Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods: Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:1. Virtual Labs at Amrita Vishwa Vidyapeetham,https://vlab.amrita.edu/?sub=1&brch=742. Digital Platforms /Web Links of other virtual labs may be suggested /	
added to this lists by individual Universities	

NATIONAL EDUCATION POLICY-2020

Common Minimum Syllabus for all Uttarakhand State Universities and Colleges for Five Years of Higher Education

> PROPOSED STRUCTURE OF <u>UG & PG - ZOOLOGY</u> SYLLABUS

> > 2021

Curriculum Design Committee, Uttarakhand

Sr.No.	Name & Designation	
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman
2.	Prof. O.P.S. Negi Vice-Chancellor , Uttarakhand Open University	Member
3.	Prof. P. P. Dhyani Vice-Chancellor, Sri Dev Suman Uttarakhand University	Member
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member

S. N.	Name	Designation	Department	Affiliation
1.	Prof H.C. S Bisht	Head & Convener	Department of Zoology	D.S.B Campus, Kumaun University, Nainital
2.	Prof Ila Bisht	Head & Convener	Department of Zoology	S.S.J Campus, S.S.J University, Nainital
3.	Dr. Ahmad Pervez (Online)	Assistant Professor	Department of Zoology	S.S.D.U Rishikesh
4.	Dr. Manoj Kumar Arya	Assistant Professor	Department of Zoology	D.S.B Campus, Kumaun University, Nainital
5.	Dr. Divya Pangtiy	Assistant Professor (Guest)	Department of Zoology	D.S.B Campus, Kumaun University, Nainital

Syllabus Expert Committee

Syllabus Preparation Committee

S.N.	Name	Designation	Department	Affiliation
1.	Prof H.C. S Bisht	Head & Convener	Department of Zoology	D.S.B Campus, Kumaun University, Nainital
2.	Prof Ila Bisht	Head & Convener	Department of Zoology	S.S.J Campus, S.S.J University, Nainital
3.	Dr. Ahmad Pervez (Online)	Assistant Professor	Department of Zoology	S.S.D.U Rishikesh
4.	Dr. Manoj Kumar Arya	Assistant Professor	Department of Zoology	D.S.B Campus, Kumaun University, Nainital

YEAR	SEMESTER	PAPER CODE	PAPERTITLE	CREDITS TH+PR
	С	ertificate course in Clin	ical Diagnostics & Biochemistry	
	Ι	ZOO101T	Animal Physiology and Biochemistry	4+2
1	II	ZOO201T	Genetics and Cell Biology	4+2
	I &II	Minor Elective	Environmental science and Basic concepts of Ecology	4+2
		Diploma in Molecular Se	ciences & Clinical Microbiology	
	III	ZOO301T	Molecular Biology, Toxicology & Histology	4+2
2	IV	ZOO401T	Microbiology and Animal Behaviour	4+2
-	III & IV	Minor Elective	Bio-Instrumentation, Bioinformatics and Biostatistics	4+2
	L	Degree in B	achelor of Zoology	
		Z00501T	Non-Chordate	4+1
	N.	ZOO503T	Chordate	4+1
3	V	Industrial Training/Survey/ Research Project	It is based on Major Papers of Semester-V	04
		ZOO601T	Developmental Biology of Vertebrates	4+1
	VI	ZOO603T	Basic mammalian Endocrinology	4+1
	V1	Industrial Training/Survey/ Research Project	With reference to Major Papers of Semester-VI	04
		, i	esearch) in Faculty	
		PAPER- I	Fundamentals of Immunology	4+1
	VII	PAPER- II	Applied Immunology	4+1
		PAPER- III	Animal Ecology	4+1
		PAPER- IV	Medical Laboratory Techniques	4+1
4		Industrial Training/ Survey/Research Project	With reference to Major Papers of Semester- VII	04
		PAPER- I	General Ichthyology	4+1
	VIII	PAPER- II	Applied Ichthyology	4+1
		PAPER- III	Basic Limnology	4+1
		PAPER- IV	Animal Ecology	4+1
		Industrial Training/Survey/ Research Project	With reference to Major Papers of Semester- VIII	04
	VII or VIII	Minor Elective	Chronobiology or Applied Zoology or General Biotechnology	4+1

		Master in	Faculty (Zoology)	
		PAPER- I	Systematics And Applied Entomology	4+1
5	IX	PAPER- II	Biology Of Insects (Morphology, Physiology & Development)	4+1
		PAPER- III	Economic Zoology And Vermicology	4+1
		PAPER- IV	Wildlife Conservation	4+1
		Industrial Training/Survey/ Research Project	With reference to Major Papers of Semester- IX	04
	X	PAPER- I	Animal Biotechnology	4+1
		PAPER- II	(Animal Cell Culture)+	4+1
		PAPER- III	Animal Biotechnology (Transgenics, Cloning And IPR)	4+1
		PAPER- IV	Medical Laboratory Techniques Wildlife Conservation	4+1
		Industrial Training/Survey/ Research Project	With reference to Major Papers of Semester-X	04

Course Objective (CO):

- The programme in Zoology aims to equip students with recent advances in Zoology from organismic to reductionist biology.
- It also aims to empower students to understand the challenges of society and the country that falls into the realms of Zoology, such as Aquaculture, Reproductive health, Behavior and Biological time keeping, Cancer Biology, Microbiome and their roles in health and diseases, Bioremediation of pollutants and pesticides, etc.
- It also offers students to a series of elective courses so that they can choose to specialize in the specific area of their interests in Zoology.
- The open elective has been chosen to attract students from diverse interdisciplinary areas of sciences, such as Anthropology, Environmental studies, Biomedical Sciences, etc.
- This course is designed to ignite the inquisitive mind to enter in to research in interdisciplinary areas. The fourth semester offers a total of 16 elective courses, which for logistics of programme management, are divided in to four streams, where a student has to choose a stream.
- In the entire course, the major emphasis is on skill-based training into socially relevant areas of Zoology.
- ➢ It is expected that a student after successfully completing the programme would sufficiently be skilled and empowered to solve the problems in the realms of Zoology and its allied areas.
- They would have plethora of job opportunities in the education, environment, agriculturebased, and health related sectors.
- The bright and ignited mind may enter into research in the contemporary areas of Zoological/Biological Sciences.
- > The broad skills and the deeper knowledge in the field would make them highly successful and excellent researcher in advanced areas of research in the Biological sciences.

Programme Objective (POs):

PO 1	It will enhance the basic knowledge about the different systems of an organism and the clinical study of biomolecules.			
PO 2	It will help students to pursue the initial fundamentals required for future projects and higher studies.			
PO 3	It will help to inculcate the evolutionary basis of various animals and their development. It will also address the present situation of animal diversity.			
PO 4	It will help students to identify the concepts about various Applied sciences and Medical laboratory techniques related to concerned area.			
PO 5	It will help to develop the knowledge on taxonomy of insects. Also, th conservation of wild animals to enhance the economy gained by the zoologica content present in the environment.			
PO 6	All the above POs will lead to a mind that can develop modern technologies to address the problems and to give solution to it.			

Programme Specific Objective (PSO):

CERTIFICATE COURSE IN CLINICAL DIAGNOSTICS & BIOCHEMISTRY					
YEAR 1	This will helps students to generate employment in the field of clinical & medical lab/institutions/gene bank/stem cell culture/Pharma companies etc.				
DIPLOMA IN MOLECULAR SCIENCES & CLINICAL MICROBIOLOGY					
YEAR 2	This will help students to develop the scientific ability in the field of toxicological, Histological, Microbiological, Molecular labs, various Zoological Parks, National Parks, Wildlife Sanctuaries.				
BACHELOR OF SCIENCE (ZOOLOGY)					
YEAR 3	This will help students to develop the basis of Animal diversity and its development, which can generate various academic/Research jobs and various other jobs in the field of In-vitro labs, case study of endocrinology in medical labs etc.				

BACHELOR (RESEARCH) IN FACULTY					
YEAR 4	It will help students to pursue career in various health related departments and medical laboratories. It is beneficial for students as they can work in different Chrono-centre as per demands for biological clock management to travel across continents (both public and private sector).				
YEAR 5	It will help students to improvise the Agro-Pest relationship, forensic Entomology & its implication it help to conserve the environment & Ecology. Also at the same time students will be equipped to explore jobs in Zoological Research i.e. CTB, CSB, ZSI, WII etc.				

<u>Syllabus</u>

<u>First Year</u>

Semester- I

Animal Physiology and Biochemistry (4+2 Credits) = 6 Credits

Animal Physiology

Nutrition: Food constituents, intracellular and extracellular digestion, Digestion and absorption of carbohydrate, fat and protein.

Respiration: Pulmonary ventilation, respiratory pigments, gaseous transport and control of respiration. With reference to dissociation of oxyhaemoglobin.

Excretion: Concept of ammonotelic, ureotelic and guanotelic animals, urine formation in mammals.

Blood vascular system: Haemopoiesis, composition and functions of blood, blood coagulation. A brief account of immunity. Types of heart, origin and conduction of heart beat. Cardiac Cycle

Nervous system: Types of Neurons Resting and action potential of nerves, synapse and transmission of nerve impulse. Neurotransmitter

Muscular system: Types of Muscles molecular and chemical basic of Muscle contraction and its Mechanism. A brief idea of tetanus and fatigue.

Biochemistry

Introduction to biological molecules: Proteins, Amino acids, Carbohydrates and Lipids- their structure, classification and significance. Metabolism of Carbohydrates. Enzymes and Vitamins.

(glycolyisis, Krebs cycle, gluconeogenesis, glyscogenesis glyogenolysis)

Mechanism of Enzyme Action, Kinetics, Inhibition & Regulation Vitamins, Types & source, deficiencies.

Practical

Suggested books:

- 1. Ganong: Review of Medical Physiology, Lang Medical Publ.
- 2. Guyton and Hall; Textbook of Medical Physiology WB Saunders.
- 3. Keel et al: Sampson Wright's Applied Physiology, Oxford Press.
- 4. C.C. Chatterjee: Human Physiology.
- 5. Nielson: Animal Physiology, Cambridge.
- 6. Jain A.K.: Textbook of Physiology, Avical Publishing Company.
- 7. Conn And Stumpf: Outlines of Biochemistry, John Wiley.

8. Pandey B.N: Zoology Series- Biochemistry, Physiology, Endocrinology, Tata McGraw Hill Edu Pvt Ltd, New Delhi.

Semester- II

Genetics and Cell Biology (4+2 Credits) = 6 Credits

Genetics

Mendel's life, Pre-Mendelian experiments, symbols and terminologies, Laws of dominance, segregation and independent assortment.

Linkage: Coupling and repulsion hypothesis, Morgan's view of linkage, kinds of linkage, chromosome theory of linkage.

Crossing over: Somatic and germinal crossing over, kinds of crossing over, theories of the mechanism of crossing over, significance.

Eukaryotic chromosomes- Structure, chemical composition, classification and uninemic and multinemic concept of chromosome structure.

Structure and functions of polytene and lampbrush chromosomes.

Determination of sex: chromosome mechanism, Genic balance theory, External environment and sex determination.

Sex linked inheritance: Inheritance of X-linked gene (Colour blindness and haemophilia in man), Sex linkage in Drosophila.

Mutation: Historical background, chromosomal mutation (Chromosomal aberrations), gene mutations and their interpretation.

Cell Biology

Prokaryotic and Eukaryotic cells; Ultrastructure of eukaryotic cell; Plasma membrane (Ultrastructure, chemical composition, models of plasma membrane; Specialisations of plasma membrane, functions of plasma membrane).

Structure and functions of following cell organelles: (a) Mitochondria (b) Ribosomes (c) Lysosomes (d) Centrioles (e) Golgi Complex (f) Endoplasmic reticulum. Structure and functions of Nucleus and nucleolus.

Cell division – (a) Cell cycle (b) Mitosis (Process of mitosis, mitotic poisons and significance of mitosis), (c) Meiosis (Process of meiosis, structure and functions of synaptonemal complex, significance of meiosis). An idea of cell transformation and cancer.

Practical

Suggested books:

1. Strickberger: Genetics, Prentice hall.

- 2. Principles of Genetics, Snustad and Simmons, John Wiley & Sons, USA.
- 3. Modern Genetics Anaysis: Integrating Genes and Genomes, Griffith, J.F., Gelbart, M., Lewontin, C and Miller, W.H. Freeman and Company, New York, USA.
- 4. Genetics, J Russell, Benjamin- Cummings Publishing Company, San Francisco, California, USA.
- 5. Lodish-el al, Molecular Biology
- 6. P.K. GUPTA, Cell Biology and Genetics.

Minor/Elective

Environmental science and Basic Concepts of Ecology (4 CREDIT)

Environmental science

1. Introduction of environmental Science: Definition, principles and scope of environmental science, structure and composition of atmosphere, hydrosphere, lithosphere and biosphere.

2. Ecosystems: definition, structure and function of ecosystem, energy flow in an ecosystem, food chain, food web and ecological, case studies of the following ecosystem: forest ecosystem, grassland ecosystem, desert ecosystem and aquatic ecosystem.

3. Natural resources: Renewable and Non-renewable resources: land resources and land use change, land degradation soil erosion and desertification. Deforestation: causes and impacts due to mining, dam building on environment, of surface and ground water, floods, droughts, conflicts over water (international & inter-state). Energy resources: Renewable and non-renewable energy sources, growing energy needs case studies.

4. Biodiversity and conservation: Level of biodiversity- genetic, species and ecosystem diversity, Bio geographic zones of India, biodiversity patterns and global biodiversity hot-sports. India as a mega-biodiversity nation, endangered and endemic species of India. Threats to biodiversity - Habitat loss, poaching of wildlife, man-wildlife conflict, biological invasions, conservation of biodiversity-in-situ ex-situ conservation of biodiversity.

5. Environmental Pollution: Types, causes, effects and controls, air, water, soil and noise pollution. Nuclear hazards and human health risks. Solid waste management-Control measures of urban and industrial waste. Pollution case studies.

6. Environmental Policies & Practices: Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture. Environmental laws-Environmental Protection Act- Air (Prevention & Control of Pollution) Act. Water (Prevention & Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, International agreements-Montreal and Kyoto protocols and Conservation of Biological Diversity (CBD).

Basic Concepts of Ecology

Definition of ecology and its relation to humanity.

The environment: Abiotic factors, biotic factors, edaphic factors.

Concept of ecosystem with reference to pond, Grassland, Forest & River ecosystem. Energy flow in ecosystem. Pyramids of number, biomass and energy. Food chain- grazing and detritus, Food web and trophic levels. Biosphere: Hydrosphere, Lithosphere and Atmosphere. Biogeochemical cycles: Carbon and Nitrogen cycles.

Population: Definition and characteristics: density, natality, mortality, migration, emigration and immigration, growth and growth-curves. Dispersion and aggregation. Negative and positive interactions including commensalism, mutualism, predation, competition and parasitism.

Practical

Suggested books:

- 1. Odum, E.P: Fundamental of Ecology, Saunders Co. Publ. Indian Ed.
- 2. Chapman & Reiss: Ecology.
- 3. Smith, R.L: Ecology & Field Biology.
- 4. Singh & Kumar: Ecology and Environmental Science, Vishal Publ.
- 5. Odum, E.P: Fundamental of Ecology, Saunders Co. Publ. Indian Ed.
- 6. Ecology and Environment by P.D. Sharma.

Second Year

Semester- III

Molecular Biology, Toxicology & Histology (4+2 Credits) = 6 Credits

Molecular Biology

Nucleic acids (DNA & RNA): DNA chemistry, nucleosides, nucleotides, polynucleotide chain, Watson and Crick DNA double helix model, identification of genetic material (DNA-as genetic material). RNA-chemistry, genetic and non-genetic RNAs. Clare leaf model of RNA Elementary knowledge of genetic code. Expression of gene-protein synthesis.

Lac operon concept. Mechanism of DNA damage & repair

Toxicology

Introduction and brief history of toxicology: General principles of toxicology, Brief history, Environmental toxicology (kinds and sources of toxic agents- animal toxins, plant toxins, pesticides, metals and food additives).

Dose response relationship: Frequency and cumulative responses, determination of TLm values, Lc_{50} , margin of safety, threshold limits.

Histology

Histology: Structure of epithelium, connective tissue, cartilage, bone, smooth,, striped and cardiac muscles, and nervous tissue as studied under light microscope.

Histological structure of gonads, liver, lung, pancreas and kidney in mammals.

Practical

Suggested books:

- 1. Molecular Cell Biology, Lodish et al., W.H. Freeman and Company, New York, USA.
- 2. Molecular Biology of the Cell, Alberts et al., Garland Science, Taylor and Francis Group, New York, USA.
- 3. De- Robertis- Cell and Molecular Biology.
- 4. Verma, P.S. and Agrawal, V.K. Molecular Biology
- 5. Tortora- Microbiology and Introduction.
- 6. Parija- Textbook of Microbiology.
- 7. Pelczar: Microbiology, Tata McGraw Hill.
- 8. Davis: Microbiology Harper & Row, Publ. Inc.
- 9. Textbook of Toxicology By Balram Pani.
- 10."Casarett & Doull's Essentials of Toxicology", 2nd Ed. Edited by Curtis A. Klaassen& John B. Watkins III, published by McGraw Hill-Lange
- 11. "Handbook of Toxicology", M.J.Derelanko & C.S.Auletta, 3rd Ed. CRC Press
- 12. Principles of Biochemical Toxicology" by J.A. Timbrell

Semester-IV

Microbiology and Animal Behaviour (4+2 Credits) = 6 Credits

Microbiology

Introduction to microbiology: kinds of microbes, Typical structure of a bacterium, Gram positive and Gram negative bacteria and virus. With reference to (COVID)

Microbes of medical importance: Bacteriophages, Mycobacterium, Rickettsia, Actinomycetes and Mycoplasma.

A brief knowledge of AIDS.

Environmental use of microorganisms: Nutrient cycle, Metal recovery, petroleum recovery, pest control, waste water treatment and Bioremediation.

Industrial microbiology- Food production, dairy products, fermented food, alcoholic beverages, microbial spoilage, food preservation. A brief knowledge of Antibiotics.

Animal Behaviour

Patterns of behaviour: Stereotype innate behaviour: Kinases, Taxes and Reflexes. Concepts of (i) Fixed action patterns (ii) Sign or key stimulus or releasers and (iii) Innate releasing mechanism, Instinctive behaviour. Learned behaviour: Habituation, Conditioned reflexes, Selective learning, Insight learning, Imprinting, Song learning in birds. Hormonal control of Behaviour

Communication: Chemical, Visual, Auditory, Electric and tactile, Dance language of honey bees, Biological clocks. Bird migration with particular reference to the mechanisms of navigation. Introduction to Socio-biology: Social structure in primates

Practical

Suggested books:

- 1. Mechanism of Animal Behaviour Peter Marlar & J. Hamilton.
- 2. Animal Behaviour by David McFarland.
- 3. Animal Behaviour John Alcock.
- 4. Pelczar Microbiology
- 5. Davies Microbiology

Minor/Elective BioInstrumentation, Bio Informatics and Biostatistics

(4+2 Credits)

BioInstrumentation

Principles and Techniques of Microscopy; Magnification and Resolution Parameters of Light, Fluorescent Phase Contrast Scanning, Transmission Electron Microscopy, Tunneling Microscopy and Inverted Microscope, Micrometry, Colony Counting and Microtomy. Laboratory Safety Guidelines.

Centrifugation – Basic Principles of Sedimentation, Types of Centrifuges, Ultracentrifugation, Differential and Rate Zonal Separations, Organellar Separation and Flow Cytometry.

Principle & Applications of Ph Meter, Spectroscopy UV- Vis, Mass Spectrometry (MS) and X-Ray Crystallography.

Chromatographic Techniques, Paper Chromatography, Partition Chromatography, Column Chromatography, Thin Layer Chromatography, Gas Chromatography, Ion Exchange, Affinity Chromatography and Introduction to HPLC,

Electrophoresis: Capillary, Agarose, SDS & Native PAGE, Pulse Field, Immuno-Electrophoresis and Paper Electrophoresis.

PCR & Thermal Cyclers, Nucleic Acid Hybridization: Southern & Northern Blotting, Western Blotting, Autoradiography. ELISA and RIA.

Bio Informatics

Introduction to Computers, Computer Fundamentals (Hardware & Software), Input, Output Devices and Storage Devices, Web Browsers, Search Engines, Flow Charts, Methods and Types of Networks, Intra and Internet, Introduction to MS-Office.

Introduction to Bioinformatics, Scope and Application of Bioinformatics, NCBI Data Model, DNA and Protein Sequence Database, Motif Analysis, Structural Database, Structural Viewers (Rasmol, Rastop, Cn3D, CSHF Chimera, Swiss PDB Viewer, Pymol), Sequence Submission to Database, Literature Database (Pubmed, Biomed Central, Medline), Internet and Biologist. Online Study *E. coli, D. melanogaster*, Human Genome, Mice Genome. DNA Chips and their Replications.

Biostatistics

Introduction to Biostatistics, Terminology and Symbols, Research and Types of Research, Applications of Statistics in Biological Research, Data, Collection and Representation of Data (Pie Chart, Bar Diagram, Histogram, Frequency Polygon and Gantt Chart), Measures of Central Tendency (Mean, Median, Mode), Variance, Coefficient of Variation, Standard Deviation, Standard Error of Mean, Analysis of Variation (ANOVA), One Way ANOVA and Two Way ANOVA. Measures of Dispersion, Distribution Patterns (Binomial, Poisson & Normal), Tests of Significance ('T' Test, 'F' Test & Chi-Square Test), Probability, Correlation and Regression Analysis, Introduction to Statistical Software and Handling (SPSS And Excel Data Sheets).

Practical

Suggested books:

- 1. Introduction to Biostatistics by Dr. Pranab Kr. Banarjee.
- 2. Bioinstrumentation by L. Veerakumari
- 3. Bioinformatics: Sequence And Genome Analysis by David W. Mount.
- Basic Bioinformatics by S. Ignacimuthu Published by Narosa Publishing House New Delhi.

Third Year

Semester- V Non-Chordate- (4+2 Credits) = 6 Credits

Salient features and outline classification (up to orders) of various Non-chordate Phyla and related type study and topics as covered under respective Phyla.

Protozoa: *Paramecium* with particular reference to locomotion, nutrition, osmoregulation and reproduction.

Porifera: *Sycon* with reference to structure, reproduction and development. Canal system, and affinities of Porifera.

Coelenterata: *Aurelia* with reference to structure, reproduction and development. Polymorphism in Coelenterata. A brief account of Corals and Coral reefs.

Helminthes: Taxonomy, morphology (including adaptations), life cycle, pathogenicity and control measures of *Fasiola*. Parasitic adaptations in Helminthes.

Annelida: *Nereis*- External features, excretory organs and reproduction. Metamerism in Annelida, its origin and significance. Trochophore larva and its significance. Parasitic adaptations in Hirudinaria.

Arthropoda: Palaemon- External features and reproduction. Peripatus- Its distribution and Zoological importance.

Mollusca: *Pila*- External features, Organs of Pallial complex. Reproduction. A brief account of torsion in Gastropoda.

Echinodermata: *Asterias*- External features. Water vascular system. Mode of feeding and reproduction.

Chordate- (4+2 Credits) = 6 Credits

Salient features and outline classification (up to order) of various chordate groups as covered under respective taxonomic groups.

Protochordata: Salient features of body organisation and systematic position of *Balanoglossus* and *Amphioxus* as a type and its affinities. Agnatha: External features of *Petromyzon*.

Pisces: Scales and fins in fishes. Parental care in fishes. Fishes in relation to man.

Amphibia: General characters and affinities of Gymnophiona . Parental care in Amphibia.

Reptilia A brief knowledge of extinct reptiles. Poisonous and non- poisonous snakes. Poison apparatus of snake. Snake venom and anti-venom. Adaptive radiation in reptiles. Adaptations of reptiles to desert life.

Aves: Flightless birds and their distribution. Flight adaptations in birds.

Mammalia: General organisation, distribution and affinities of Prototheria. Economic importance. Adaptive radiation with particular reference to aquatic mammals.

Practical

Suggested books:

- 1. Barnes: Invertebrate Zoology (4th ed.), Holt- Saunders, 1980.
- Hickman, Roberts & Hickman: Integrated principles of Zoology (7th) ed Times- mirror, Mosby
- 3. Kotpal R.L: Modern Textbook Of Zoology : Invertebrates. Rastogi
- 4. Nigam: Biology of Non-Chordates, Nagin Chand.
- 5. Parker TJ & haswell WA: Textbook of zoology Vol I & II, Mcmillan.
- 6. Hyman L: Invertebrate Series, Academic Press

Semester- VI

Developmental Biology of Vertebrates (4+2 Credits) = 6 Credits

Gametogenesis: Spermatogenesis and Oogenesis including structure, differentiation and longevity of gametes. Chemical and metabolic events during gamete formation. Types of eggs.

Fertilization: Significance of fertilization, approximation of gametes, Capacitation, Acrosome reaction, formation of fertilization membrane, egg activation, Blockage to polyspermy.

Cleavage: Patterns, control of cleavage patterns, chemical changes during cleavage, totipotency. Blastulation and Gastrulation: A complete study in frog and chick.

Fate maps, their formation and significance.

Foetal membranes: Their formation and functions in chick.

Retrogressive metamorphosis: As exhibited by an ascidian.

Regeneration: Morphallaxis and Epimorphosis, Blastema and its significance, mechanisms as exhibited by invertebrates (*Hydra* and *Planaria*) and Vertebrates (Limb regeneration in Amphibia).

Placentation in mammals.

Embryonic Induction: Origin, structure and significance of primary organizer.

Practical

Suggested books:

- 1. Gilbert: Development Biology Sinauers Ass. Publ. Massachusetts.
- 2. Wolpert: Analysis of Biological development, Oxford.
- 3. Kolthoff, Analysis of Biological development, McGraw-Hill Science, New Delhi, India.
- 4. Balinsky: Introduction to Embryology Saunders co. Philadelphia and London.
- 5. Berill: Development Biology Tata McGraw Hill.

General Endocrinology (4+2Credits) = 6 Credits

Endocrine system: A brief knowledge of the structure and hormonal functions of the glands namely, Pituitary, Thyroid, Pancreas, Adrenal, Testis and Ovary. Elementary knowledge of the Dwarfism, gigantism, acromegaly, diabetes insipidus, Goitre, Cretinism, Myxoedema, Diabetes mellitus and Addison's disease.

Fourth Year

Semester-VII

Fundamentals of Immunology (4+1Credits) = 5 Credits

Unit - I

Introduction and Historical Background: Cells and Organs of Immune System

- Definition, Overview of Immune System- Anatomical, Physiological and Inflammatory Barriers. Major Contribution of Following Scientists- Edward Jenner, Jacob Henle, Louis Pasteur, Joseph Lister, Robert Koch, Paul Ehrlich, Elie Metchnikoff, Emil Von Behring, Jules Bordet, Karl Landsteiner, Jules Freund, Peter Gorer And George Snell, Tiselius & Kabat, Gerald Eldelman & Rodeny Porter, Cesar Milstein & Georges Kohler, Peter Doherty & Rolf Zinkernagel
- Hematopoiesis Formation of B-Lymphocytes and T-Lymphocytes and Its Regulation. Cells of The Immune System- NK Cells, B-Lymphocytes, T-Lymphocytes, Granulocytic Cells, Dendritic Cells Primary Lymphoid Organs and their Functional Role- Bone Marrow and Thymus. Secondary Lymphoid Organs and Its Functional Role- Lymph Nodes, Spleen, Mucosal-Associated Lymphoid Tissue [MALT], Intraepithelial Lymphocytes [IEL], Cutaneous-Associated Lymphoid Tissue [CALT]

Unit - II

Antigen and Immunogen, Structure and Function of Immunoglobulins, Structure and Function of MHC:

Antigen- Definition and Its Properties. Immunogen-Definition and Its Properties. Antigenecity Vs. Immunogenicity and Factors Affecting It. Haptens and Adjuvants. Basic Structure of Immunoglobulin. Classes of Immunoglobulin and Its Biological Activities. Major Histocompatibility Complex [MHC] - Structure, Types and Function. Regulation of MHC Expression. Production of Monoclonal Antibodies, Its Mechanism [De Novo and Salvage Pathway] and Application in Research and Health.

Unit - III

Primary And Secondary Line Of Defence [Innate And Acquired Immunity], Antigen-Antibody Interactions:

Innate Immunity- Phagocytic Barriers. Antigen Presenting Cells. Antigen Processing and Presentation. Acquired Immunity- B-Cell Mediated Immunity, T-Cell Mediated Immunity Its Mechanism and Regulation. Immune Memory of B-Lymphocytes.

Structure of Antibody, Treatment of Antibody with Pepsin, Papain, B-Mercaptoethanol and DMSO. Interaction of Antigen-Antibody- Antibody Affinity, Antibody Avidity, Cross Reactivity, Precipitation Reactions and Agglutination Reactions.

Unit - IV

Immune Effector Mechanism, Allergy And Hypersensitivity:

Cytokines- Properties and Its Receptors. Cytokine Secretion by Th1, Th2 And Th17 Subsets And Its Function. The Complement System: Its Components, Functions, Activation and Regulation. Complement Deficiencies.

Allergy and Hypersensitivity: Gell and Coombs Classification, IgE Mediated [Type I] Antibody-Mediated Cytotoxicity [Type II], Immune Complex-Mediated [Type III] and T_{DTH}-Mediated [Type IV] Hypersensitivity.

Paper II Applied Immunology (4+1Credits) = 5 Credits

Unit - I

Immune Response to Infectious Diseases:

Mechanism of Immune Response During: Viral Infections [Influenza, HIV], Bacterial Infections [*Corynebacteria* and *Mycobacterium*] Protozoan Infection [*Plasmodium*, *Trypanosoma* and *Leishmania*], Helminthes Infections [*Ascaris* and *Schistosoma*].

Unit - II

Disease of Immune System And Vaccines:

Mechanism of Autoimmune Diseases- Systematic Lupus Erythromatous [SLE], Myasthenia Gravis, Rheumatoid Arthritis, Celiac Disease. Cancer of Blood Cells-Lymphoma and Leukemia [Hodgkin and Non-Hodgkin]. Vaccines- Historical Background, Routine Vaccines, DNA Vaccines, Snake-Antidotes. Production of Monoclonal Antibodies and Its Mechanism.

Unit - III

Immunotechnology:

Separation of Immune Cells by Flow cytometry [FACS]: Its Principle and Application. Principle and Application of Immunoprecipitation. Functioning and Application of Microscopes: Immunofluorescence and Confocal. Principle and Application of *in-Situ* Hybridization Technology-FISH [Fluorescence *In-Situ* Hybridization] and GISH [Genome *in-Situ* Hybridization]. Principle, Methodology and Application of Following Techniques-ELISA [Enzyme Linked Immunosorbent Assay], RIA [Radio Immuno Assay], Western Blotting. Allergy Evaluation: Principle and Methodology of Skin Prick Test for Allergy.

Unit - IV

Transplantation Immunology:

Transplantation- History, Graft Vs. Host Rejection Studies for Specific Transplantation I.E Skin Graft, Kidney, Liver and Heart With Reference to Hyperacute, Acute and Chronic Rejection and Its Mechanism. Immunosuppression- Definition, Drugs Used for Immunosuppression and Its Mechanism of Action. Xenotransplantation- Definition and Its Application. HLA Phenotyping, Lymphoproliferation Assay, Its Working Principle and Applications. Blood Groups- MN, ABO Blood Group and Blood Transfusion.

Paper III Animal Ecology (4+1Credits) = 5 Credits

Unit-I

- Ecology: Its Relevance to Human Welfare, Subdivisions and Scope. The Environment: Physical Environment; Biotic Environment; Biotic and Abiotic Interactions.
- Habitat and Niche: Concept of Habitat and Niche; Niche Width and Overlap; Fundamental and Realized Niche; Resource Partitioning; Character Displacement.

Ecosystem's Structure and Function: Forest and Lake's Biotic and Abiotic Components, Primary and Secondary Productivity, Movement of Energy and Materials, Energy Efficiency Thermal Stratification and Circulation and Lake's Typology.

Unit-II

- Limiting Factors: Laws of Limiting Factors, Impact of Temperature, Moisture and pH on Organisms. Structure and Function of Some Indian Ecosystems: Terrestrial (Forest, Grassland) and Aquatic (Fresh Water, Marine and Eustarine).
- Population Ecology: Characteristics of a Population; Population Growth Curves; Population Regulation; Life History Strategies (r And k Selection); Concept of Meta-Population – Demes and Dispersal, Interdemic Extinctions, Age Structured. Altruism (Hamilton's Rule).
- Community Ecology: Community Attributes Namely Dominance, Various Types of Diversity Indices (Lincoln Peterson Index, Simpson Index, Shannon Weiner Index, Berger Parker Index and Brillouin Index). Similarity Coefficient and Niche Concept, Community Nomenclature. Lotka-Voltera Model of Species Competition.

Unit-III

- Stressed Water Ecosystems: Point and Non-Point Sources of Pollution, Assessment of Freshwater Pollution Using Various Parameters. Water Quality Monitoring Using Abiotic Factors (E.G. Ph, Oxygen, Nitrate, Ammonia, Phosphate, BOD), Bio-Monitoring (Phytoplankton, Zooplankton and Zoo Benthos), Environmental Impact Assessment (EIA)-Impact Of Environmental Stress on Biotic And Abiotic Factors.
- Eutrophication: Its Causes, Assessment, Consequences and Control. Indicators of Pollution and Eutrophication.
- Species Interactions: Types of Interactions, Interspecific Competition, Herbivory, Carnivory, Pollination and Symbiosis.

Unit-IV

- Ecological Succession: Types; Mechanisms; Changes Involved In Succession; Concept Of Climax.
- Biogeography: Major Terrestrial Biomes; Theory of Island Biogeography; Bio-Geographical Zones of India.

- Applied Ecology: Environmental Pollution; Global Environmental Change; Biodiversity: Status, Monitoring and Documentation; Major Drivers Of Biodiversity Change; Biodiversity Management Approaches. Global Conventions on Environmental Pollution (Kyoto Protocol, Montreal Protocol, Earth Summit 2002 and Copenhagen Accord).
- Conservation Biology: Principles of Conservation, Major Approaches to Management, Indian Case Studies on Conservation /Management Strategy (Project Tiger, Biosphere Reserves and Lakes).

Paper IV Medical Laboratory Techniques

(4+1Credits) = 5 Credits

Unit I

- Basic Laboratory Principles Code of Conduct of Medical Laboratory Personnel. Organization and Functioning of Clinical Laboratory. Safety Measures - Safety Equipment's, Safety Symbols.
- Hazards in the Laboratory (Chemical Hazards, Clinical Hazards, Electrical Hazards, Biological Hazards. Waste Disposal.

Unit II

- Introduction of Common Laboratory Equipment's: Hot Air Oven, Incubator, Autoclave, Water Bath and Centrifuges
- Microscope Fundamentals of Microscopy, Resolution and Magnification, Light Microscopy, Electron Microscopy, PCR Machine (Thermal Cycler), Electrophoresis Unit and UV Trans Illuminator Etc.

Unit III

- Specimen Collection, Processing and Analytical Techniques Collection and Preservation of Blood, Urine, Stool, Sputum, Pus, Body Fluids and Swab.
- Preparation of Blood Smears. Sources of Biological Variations and Pre-Analytical Variables.

Unit IV

- Preparation of Reagents: Buffers and pH, Normal, Percent and Molar Solution, Normal Saline -Methods of Measuring Liquids.
- Clinical Laboratory Records Modern Laboratory Set Up Quality Control: Accuracy, Precision, and Reference Values.
- Disposal of Biomedical Waste
- Laboratory Safety Protocols and Guidelines

Semester- VIII

Paper I General Ichthyology (4+1Credits) = 5 Credits

Unit I

- Classification of Fishes, Systematic Position, Habit and Habitat, Morphology, Distribution, Significance and Affinities of Holocephali and Dipnoi.
- > Fins, Their Origin and Evolution; Locomotion in Fishes.
- Histomorphology and Elementary Physiology (A) Digestive System (With Particular Reference to Food And Feeding Habits of Freshwater Fishes) (B) Excretory System (With Particular Reference to Acid Base Balance and Osmoregulation.) (C) Accessory Respiratory Organs in Fishes.

Unit II

- General Survey of the Marine, Estuarine and Inland Capture Fisheries of India with Particular Reference to Fishery Resources of Uttaranchal. Methods of Fishing: Fishing Gears and Crafts. Cold Water Fishery Sewage-Fed Fishery and Shell –Fish Fishery.
- Nutrition and Growth Including Age and Growth Relationship, Chemical Composition of Fish Flesh, Length –Weight Relationship, Natural Food and Artificial Feed and Their Role in Fish Culture. Plankton and Benthos in Relation to Fish Production

Unit III

- Electric Organs in Fishes.
- Brief Knowledge of Sexual Dimorphism, Courtship And Parental Care. Migratory Instincts, Hill Stream Adaptations
- Reproduction in a Major Carps- Structure Of Gonad, Spawning, Early Development And Metamorphosis. Microscopic Structure And Hormonal Functions Of The Following Endocrine Glands: Pituitary, Thyroid, Pancreas, Adrenal, Corpuscles Of Stannins, Ultimobranchial Glands, Caudal Neurosecretory System And Sex Hormones. Current Trends In Induced Breeding In Fishes.

Unit IV

- Brief Knowledge of Sense Organs: Organs of Smell, Eyes, Hearing, Ampulla of Lorenzeni, Bio-Luminescence, Sound Production and Lateral Line System.
- Parental Care in Fishes. Venomous and Non-Venomous Fishes. Fish Pheromones. Coloration in Fishes.

Paper IIApplied Ichthyology (4+1Credits) = 5 Credits

Unit I

- Important Cultivable Fishes
- Important Cultivable Shellfishes
- Biology of Cultivated Fish and Shellfish

Unit II

- Ecology and Productivity of Fish Ponds. Pollution in Relation to Fisheries.
- Carp Culture: Mono Culture, Poly Culture and Composite Fish Culture. Live Fish Culture. Management Practices: Weed, Insect and Carnivorous Fishes.

Unit III

Maturation and Fecundity, Spawning and Seed Collection, Induced Breeding, Hatching Techniques and Hatcheries, Nursery Management, Packing and Transport of Fish.

Unit IV

- Integrated Aquaculture: Fish-Cum Poultry, Fish-Cum Duckery, Fish-Cum Piggery, Paddy-Cum Fish Culture And Dairy-Cum Fish Culture. Induced Spawning and Hybridization. Factors Responsive for Induced Breeding, Hypophysation . Use of Different Synthetic and Natural Hormones.
- Larvivorus Fishes and Public Health. Fish Diseases and Their Management. Exotic Fishes and Their Merits and Demerits, Cryopreservation of Gametes and Embryos. Ornamental Fish Culture.

Paper III Basic Limnology (4+1Credits) = 5 Credits

Unit I

- Introduction and Development of Limnology in India
- > Inland, Waters Distribution of Inland Waters: Ponds, Lakes, Streams, River

Unit II

- Lakes: Thermal Classification of Lakes, Famous Lakes of India and World, Nature of Inland Water Environment.
- Physical Characteristics: Pressure, Compressibility, Density Mobility, Buoyancy, Movement of Water Thermal Stratification Light, Color and Turbidity

Unit III

- Chemical Characteristics: Dissolved Gases Oxygen, Carbon Dioxide and Other Dissolved Gases Dissolved Solids and Dissolved Organic Matter Influence of Physical and Chemical Conditions on Living Organisms in Inland Water Bodies.
- Planktonic Organisms: Classifications of Organisms in Water Distribution of Plankton Food For Plankton Organisms

Unit IV

- Biological Productivity, Circulation of Food Material, Classification of Lakes Based on Productivity, Laws of Minimum, Biotic Potential and Environmental Resistance, Quantitative Relations in a Standing Crop
- Water Pollution, Eutrophication, Algal Blooms, Water Borne Diseases and Drinking Water Parameters
- Bioremediation of Polluted Water Bodies.

Paper IV Animal Ecology (4+1Credits) = 5 Credits

Unit-I

- Ecology: Its Relevance to Human Welfare, Subdivisions and Scope. The Environment: Physical Environment; Biotic Environment; Biotic and Abiotic Interactions.
- Habitat and Niche: Concept of Habitat and Niche; Niche Width and Overlap; Fundamental and Realized Niche; Resource Partitioning; Character Displacement.
- Ecosystem's Structure and Function: Forest and Lake's Biotic and Abiotic Components, Primary and Secondary Productivity, Movement of Energy and Materials, Energy Efficiency Thermal Stratification Circulation and Lake's Typology.

Unit-II

- Limiting Factors: Laws of Limiting Factors, Impact of Temperature, Moisture and pH on Organisms. Structure and Function of Some Indian Ecosystems: Terrestrial (Forest, Grassland) and Aquatic (Fresh Water, Marine, Eustarine).
- Population Ecology: Characteristics of a Population; Population Growth Curves; Population Regulation; Life History Strategies (r and k Selection); Concept of Meta-Population – Demes and Dispersal, Interdemic Extinctions, Age Structured. Altruism (Hamilton's Rule).

Community Ecology: Community Attributes Namely Dominance, Various Types of Diversity Indices (Lincoln Peterson Index, Simpson Index, Shannon Weiner Index, Brillouin Index and Berger Parker Index). Similarity Coefficient and Niche Concept, Community Nomenclature.

Unit-III

- Stressed Water Ecosystems: Point and Non-Point Sources of Pollution, Assessment of Freshwater Pollution Using Various Parameters. Water Quality Monitoring Using Abiotic Factors (E.G. pH, Oxygen, Nitrate, Ammonia, Phosphate, BOD), Bio-Monitoring (Phytoplankton, Zooplankton and Zoo Benthos), Environmental Impact Assessment (EIA)-Impact of Environmental Stress on Biotic and Abiotic Factors.
- Eutrophication: Its Causes, Assessment, Consequences and Control. Indicators of Pollution and Eutrophication.
- Species Interactions: Types of Interactions, Interspecific Competition, Herbivory, Carnivory, Pollination and Symbiosis.

Unit-IV

- Ecological Succession: Types; Mechanisms; Changes Involved in Succession; Concept of Climax.
- Biogeography: Major Terrestrial Biomes; Theory of Island Biogeography; Bio-Geographical Zones of India.
- Applied Ecology: Environmental Pollution; Global Environmental Change; Biodiversity: Status, Monitoring and Documentation; Major Drivers of Biodiversity Change; Biodiversity Management Approaches. Global Conventions on Environmental Pollution (Kyoto Protocol, Montreal Protocol, Earth Summit 2002 and Copenhagen Accord).
- Conservation Biology: Principles of Conservation, Major Approaches to Management, Indian Case Studies on Conservation /Management Strategy (Project Tiger, Biosphere Reserves and Lakes).

Practical

Suggested books:

- 1. Srivastava CBL: Fish Biology, Narendra Publishing House.
- 2. Singh HR: Advance in Fish Biology, Hindustan Publishing Corp.

- 3. Munshi & Munsi: Fundamental of Freshwater Biology. Narendra Publishing House.
- 4. Kyle: The biology of Fishes.
- 5. Khanna & Singh: Fish and Fisheries.

Minor/Elective

Chronobiology (4+1Credits) = 5 Credits

Introduction to chronobiology. Evolution of biological timing system; Clocks, genes and evolution; Adaptive functional significance of biological clocks.

Studying biological clocks; Biological Rhythms - Ultradian, Tidal/Lunar, Circadian and Circannual rhythms; Temperature effects and compensation; Perception of natural zeitgeber signals; Geophysical environment - Seasons; proximate and ultimate factors.

Entrainment, masking and zeitgeber cycles; parametric and non-parametric entrainment; Entrainment models; Phase shift, Phase response curves (PRC) and phase transition curves (PTC); Organization of circdian system in multicellular animals; Concept of central and peripheral Clock system in multicellular animals; SCN suprachiasmatic nucleus as the main vertebrate clock, concept of core and shell.

Diversity and complexity of the clock system, Melatonin: input and output signal of the clock system. Photoreception and photo-transdustion. Human Health and diseases-chronopharmacology, chronomedicine, chronotherapy.

or

Applied Zoology (4+1Credits) = 5 Credits

Parasitic protozoa and Helmeinthes: Ancylostoma, Schistosoma, Ascaris, Filaria (including periodicity).

Detailed information on:

- (a) Aquaculture
- (b) Sericulture
- (c) Apiculture
- (d) Lac culture

Section – B

Bionomics and control measures of the common pests of fruits (*Papilio demoleus* and *Quadraspidiotus perniciosus*), Vegetables (*Thrips tabaci* and *Aulacophora foveicollis*) and stored grains (*Callosobruchus chinensis* and *Trogoderma granarium*). Polyphagous pests (Locust and Termites).

Pest management, including insect pest control and integrated pest management. A note on Bioethics.

Economic importance of birds and mammals.

Common Pest of Uttarakhand.

or

General Biotechnology (4+1Credits) = 5 Credits

Origin and definition, scope and importance of Biotechnology. Recombinant DNA technology and Genetic engineering. Restriction enzymes and cloning techniques used in recombinant DNA technology, DNA fingerprinting. Biochips.

Biotechnological innovations in the area of medical, agricultural industrial & forensic sciences.

Fifth Year

Semester-IX

<u>Paper I</u>Systematics And Applied Entomology (4+1Credits) = 5 Credits Unit I

- Ancestry and Evolution of Insects
- Classification of Insects
- Principles of Construction and Use of Dichotomous Keys in Insect Identification
- Methods of Collection, Preservation and Culture of Insects
- Parental Care in Insects

Unit II

Brief Knowledge of Habit, Habitats and General Characters of the Following Orders With Special Reference to the Families Mentioned: Thysanura (Machilidae, Lepismatidae), Collembola, Odonata, Orthoptera (Acrididae, Tettigonidae, Gryllidae), Phase Theory in Locusts, Phithioptera (Anoplura, Mallophaga), Isoptera, Thysanoptera, Heteroptera (Pentatomidae, Belostomatidae), Homoptera (Aphidae, Coccidae), Coleoptera (Coccinellidae, Curculionidae), Lepidoptera (Noctuidae, Nymphalidae), Hymenoptera (Ichneumonidae, Formicidae); Diptera (Muscidae, Syrphidae)

Unit III

- Principles and Practices of Pest Control:
- Pest Control Procedures: Natural Control, Applied Control (Cultural, Biological and Insecticidal)
- Modes of Action of Insecticides, Factors Affecting Toxicity of Insecticides
- Non-Insecticidal Methods : Antifeedents, Attractants and Repellents, Feeding Deterrents, Chemosterilants, Pheromones and Insect Growth Regulators (IGR's)
- Integrated Pest Management (IPM)
- Insecticide Application Equipments: Sprayers, Dusters, Granule Applicators

Distribution, Habit and Habitats, Life-Cycle, Nature of Damage and Control of Pests of: Stored Grains (Sitophilus Oryzae, Tribolium Castaneum, Callosobruchus Chinensis); Sugarcane (Pyrilla Perpusilla, Chio Infuscatellus); Paddy(Leptocorisa Acuta, Hieroglyphus Banian/Nigrorepletus), Cotton (Dysdercus Koengii, Pectinophora Gossypiella); Cereals (Heliocoverpa Armigera, Agrotis Ypsilon) Vegetables((Raphidopalpa (=Aulacophora) Foveicollis, Pieris Brassicae); Fruits(Bactrocera (= Dacus) Cucurbitae, Papilio Demoleus); Forests (Defoliator: Tasar Silkworm, Antheraea Paphia; Sap-Sucker Of Khamer Or Gamhar, *Tingis Beesoni*; **Teak Borer**, *Aeolesthes Holosericea*); And **Polyphagous Pests** (Locusts, Termites)

Unit IV

Lac Industry: Strains of Lac Insects, Lac Cultivation, Composition and Uses of Lac

Apiculture: Kinds of Honey Bees and Bee Hives, Structure of Typical Bee Hive Organization of Honey Bees, The Language of Honey Bees, Bee Keeping Methods, Economic Importance and Diseases of Honey Bees. Parasites of Honey Bee (*Varroa Destructor, Varroa Jacobsoni* and *Galleria Mellonella*).

Sericulture: Mulberry and Non-Mulberry Sericulture, Composition Processing of Silk and Silk Industry in India. Diseases of Silkworm (White Muscadine and Pebrine Disease).

Life-Cycle and Control of Insects of Medical Importance of Man and Animals: House Flies, Mosquitoes, *Phelbotomus* (Sandfly) and *Tabanus* (Horse Fly)

Paper II Biology of Insects (Morphology, Physiology & Development) (4+1Credits) = 5 Credits

Unit I

- Integument: Structure, Functions and Modifications of Insect Cuticle, Moulting and Sclerotization
- Structure of an Insect Head, Thorax and Abdomen; Appendages of Head (Mouthparts and Antennae) and Thorax (Legs and Wings)
- Structure of a Wing of an Insect, Types of Wings, Hypothetical Wing Venation, Wing-Coupling Mechanisms and Flight Mechanism
- Structure and Modifications of Male and Female Genitalia in Insects

Unit II

- Structure and Modifications of Alimentary Canal;Food and Feeding Mechanism of a Generalised Insect With Special Reference to Physiology of Digestion in Different Insects
- Structure and Functions of Blood and Mode of Circulation in Insects
- Principal Organs of Excretion of Insects Found in Different Habitats, Physiology of Excretion With Special Reference to Osmoregulation in Insects

Unit III

- Structure and Functioning of Various Types of Respiratory Organs, Modes of Respiration, Physiology of Respiration in Terrestrial, Aquatic and Endoparasitic Insects
- ➢ Generalized Plan of Nervous System in Insects and Its Modifications
- Neuroendocrine System in Insects and The Role Of Neurosecretion In Various Metabolic Activities, Metamorphosis and Development of Insects

Structure and Functions of Different Types of Visual and Sound Producing Organs in Insects Unit IV

- Structure, Function and Physiology of Mechanoreceptors and Chemo Receptors in Insects
- Bioluminescence: Light Producing Organs, Mechanism and Significance of Light Production in Insect
- Structure of Pheromone Producing Glands, Different Types of Pheromones and their Chemical Nature
- Structure and Modification of Male and Female Reproductive Systems in Insects
- Development: Structure of Egg, Maturation, Cleavage, Blastokinesis, Formation of Germ Layers and Segmentation; Different Types of Larvae and Pupae, Polyembryony and Parthenogenesis in Insects

PAPER III Economic Zoology and Vermicology (4+1Credits) = 5 Credits Unit I

- The General Study of Parasites in Terms of Morphology, Mode of Transmission, Symptoms, Prevention and Control.
- Types of Parasites Unicellular Parasite. Protozoans (Entamoeba Histolytica, Plasmodium Spp.,) Trypanosoma Spp. Leishmenia Spp. Etc.) Giardia and Vector Biology.
- Study: Multicellular Parasites, Platyhelminthes (Tape Worms and Liver Flukes) Aschelminthes (Ascaris) Nematoda- Sea Eligans.

Unit II

- Pests and Parasites, Apiculture, Sericulture, Lac Culture, Pisciculture, Dairy and Farming's Products.
- Pesticides (Organchlorines, Arganophosphates, Carbanates, Pyrethroids, Triazmes, Bardeux Nixture), Mode of Action of Pesticides, Advantages and Disadvantages of Pesticides Hazards of Pesticides,
- Biological Methods of Pest Control.

Unit III

- Earthworm Diversity: Classification Earthworm Types: White Worm Behavior of Earthworms As Indicators of Soil Fertility, Earthworms As Bioreactors; Earthworms and Plant Growth, Organic Matter-Dynamics and Nutrient Cycling, Feeding Habit and Food
- Vermicomposting :Advantages of Vermicomposting, Vermicomposting in Daily Life, Vermiculture Vs. Vermicomposting, Chemical Compostion of Vermicompost

Vermicomposting at Home and Agricultural Farm; The Business of Worms; Interaction of Vermicompost Earthworms.

Unit IV

- Earthworm Bio-Technology:Fundamentals of Sustainability; Enrichment of Vermicompost and Earthworms for Sustainable Production, Earthworms in Bio-Remediation, Earthworms in Alternative Medicine, Earthworm Meal Production Transgenic Earthworms.
- Organic Farming: Eco-Friendly Farming System Technologies. Evaluation Study of Ecological Constraints (Climatic and Edaphic,). Appropriate Technologies, in Agro-Forestry, Natural-Management, Planted Forests, (Ranching, Farmers Perception to Organic Farming and any Case Study).

Paper IV Wildlife Conservation (4+1Credits) = 5 Credits

Unit I

- Indian Wildlife: Introduction, Distribution of Wildlife in Ecological Subdivision of India, IUCN Categories
- Protected Area Network: National Parks, Wildlife Sanctuaries, Biosphere Reserves and Zoos in India, Gene Pool, Habit, Habitat and Breeding Biology of Few Mammals (Viz., Elephant and Tiger).

Unit II

- Reasons For Wildlife Depletion: Habitat Fragmentation, Habitat Destruction, Commercial Wildlife Exploitation, Overgrazing Etc.,
- Wildlife Conservation (Policies and Programmes), Special Projects for Endangered Species (Project Tiger, Gir Lion Sanctuary Project and Crocodile Breeding Project).

Unit III

Principle and Practice of Wildlife Management: Management of Special Habitats; Riparian Zones, Grasslands Introduction to Conservation Biology, Conservation Values and Ethics of Conservation of Natural Resources. Conservation of Biodiversity, Patterns and Processes, Concepts of Biodiversity, Levels of Biodiversity, Genetic Diversity, Intra Specific Diversity, Species Richness, Richness of Higher Taxa, Ecosystem and Biome Diversity.

Unit IV

- International Conventions on Conservation (Ex-Situ and in-Situ Conservation, Conservation Breeding (E.G. Vulture, Pygmy Hog, Gharial, Etc.), Institutions and their Role in Conservation (Zoos, Natural History Museums and Collections, Zoological Survey of India and Its Regional Centres.
- National and International Zoological Institutes, Societies and Academic Bodies.
- Brief Account of Wildlife Acts and Their Amendments in India and World. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).

Semester-X

Paper I Animal Biotechnology (Animal Cell Culture)

(4+1Credits) = 5 Credits

Unit I

- Animal Cell Culture: Equipment and Materials for Animal Cell Culture Technology. Design and Layout of Culture Room, Sterilization and Aseptic Techniques.
- Culture Medium: Natural Media, Synthetic Media, Sera. Introduction to Balanced Salt Solutions and Simple Growth Medium. Brief Discussion on the Chemical, Physical and Metabolic Functions of Different Constituents of Culture Medium, Role of Carbon Dioxide, Serum and Supplements in Animal Cell Culture.
- Characteristics of Cells in Culture: Contact Inhibition, Anchorage Dependence and Cell-Cell Communication.

Unit II

- Mechanical and Enzymatic Disaggregation of Tissue and Setting up of Primary Cultures, Candling of Eggs, Preparation of Chick Fibroblast, Culture of Lymphocytes For Chromosomal Studies. Roller and Suspension Culture Techniques. Large-Scale Production of Cells Using Bioreactors, Micro- Carries and Perfusion Techniques.
- Measurement of Viability and Cytotoxicity. Biological Characterization of the Cultured Cells, Karyotyping, Cryopreservation and Revival. Detection of Contaminants in Cell Cultures.

Unit III

- Fermentation Technology for the Growth of Animal Cells and their Products (Bioreactors, Hollow Fiber Reactors, Air-Lift Fermentors, Chemostats and Microarriers). Established Cell Line Cultures: Definition of Cell Lines, Maintenance and Management; Cell Adaptation.
- Stem Cell Cultures, Embryonic Stem Cells and their Applications. Somatic Cell Genetics. Organ and Histotypic Cultures.
- Cell Cloning, Cell Synchronization and Cell Manipulation. Various Methods of Separation of Cell Types, Advantages and Limitations; Flow Cytometry. Production and Characterization of Monoclonal Antibodies and their Application.

Unit IV

- Commercial Applications of Animal Cell Culture: Cell Culture Based Vaccines, Tissue Culture as a Screening System; Cytotoxicity, *in-vitro* Testing of Drugs and Diagnostic Tests. Mass Production of Biologically Important Compounds (E.G. Vaccines and Pharmaceutical Proteins).
- Production of Recombinant Hemoglobin, Blood Substituents, Artificial Blood. Harvesting of Products, Purification and Assays. Three Dimensional Cultures and Tissue Engineering (Artificial Skin and Artificial Cartilage).

Paper II Animal Biotechnology(Transgenics, Cloning And IPR) (4+1Credits) = 5 Credits

Unit I

- Gene Transfer Technology in Animals: Viral And Non-Viral Methods, Sperm Mediated Gene Transfer, Transfection of Animal Cell Lines and their Immortalization, Gene Knock Out Animal Models, Current Status of Production of Transgenic Animals.
- Animal Cloning: Techniques, Relevance, Case Studies and Ethical Issues.

Unit II

In Vitro Fertilization (IVF) and Embryo Transfer (ET) Technology in Humans; Superovulation, Micromanipulation, IVF And Embryo Culture in Farm Animals (E.G. Cow); Embryo Transfer In Cattle, Gene Transfer or Transfection (Using Eggs And Cultured Stem Cells): Targeted Gene Transfer; Transgenic Animals (Mice, Sheep, Pigs, Rabbits, Goats, Cows and Fish).

Unit III

Introduction to Biosafety Regulations; Primary Containment for Biohazards and Biosafety Levels, Biosafety Guidelines – Government of India. Definition of Genetically Modified Organisms (Gmos) & Living Modified Organisms (Lmos); Roles of Institutional Animal Ethical Committee, Review Committee on Genetic Manipulation (RCGM), Genetic Engineering Approval Committee (GEAC) Etc.

Prevention of Cruelty on Animals Act Govt. of India, Concept of Bioethics, Public Concerns on Human Genome Research and Transgenics – Genetic Testing and Screening, Ethics in Clinical Trials and Good Clinical Practices(GCP), Ethical, Legal and Social Implications (ELSI) & Human Genome Project; Ethics in Human Cloning and Patenting Human Genes.

Unit IV

- Intellectual Property Rights and Its Types-Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of New GMOs, Basics of Patents (Types, Patent Application and Specifications), Concept of Prior Art and Patent Filling Procedures, Process Patent Vs Product Patent.
- Introduction to General Agreement on Tariffs and Trade (GATT), World Trade Organization (WTO), World Intellectual Property Organization (WIPO) and Trade Related Intellectual Property Rights (TRIPS).

Paper III Medical Laboratory Techniques (4+1Credits) = 5 Credits

Unit I

- Basic Laboratory Principles Code of Conduct of Medical Laboratory Personnel. Organization and Functioning of Clinical Laboratory. Safety Measures - Safety Equipment's, Safety Symbols.
- Hazards in the Laboratory (Chemical Hazards, Clinical Hazards, Electrical Hazards, Biological Hazards. Waste Disposal.

Unit II

- Introduction of Common Laboratory Equipment's: Hot Air Oven, Incubator, Autoclave, Water Bath, Centrifuges
- Microscope Fundamentals of Microscopy, Resolution and Magnification, Light Microscopy, Electron Microscopy, PCR Machine (Thermal Cycler), Electrophoresis Unit and UV Trans Illuminator Etc.

Unit III

- Specimen Collection, Processing and Analytical Techniques Collection and Preservation of Blood, Urine, Stool, Sputum, Pus, Body Fluids and Swab.
- > Preparation of Blood Smears. Sources of Biological Variations, Pre-Analytical Variables.

Unit IV

- Preparation of Reagents: Buffers and pH, Normal, Percent and Molar Solution, Normal Saline -Methods of Measuring Liquids.
- Clinical Laboratory Records Modern Laboratory Set Up Quality Control: Accuracy, Precision, and Reference Values.
- Disposal of Biomedical Waste
- Laboratory Safety Protocols and Guidelines

Paper IV Wildlife Conservation(4+1Credits) = 5 Credits

Unit I

- Indian Wildlife: Introduction, Distribution of Wildlife in Ecological Subdivision of India, IUCN Categories
- Protected Area Network: National Parks, Wildlife Sanctuaries, Biosphere Reserves and Zoos in India, Gene Pool, Habit, Habitat and Breeding Biology of Few Mammals (Viz., Elephant and Tiger).

Unit II

- Reasons for Wildlife Depletion: Habitat Fragmentation, Habitat Destruction, Commercial Wildlife Exploitation, Overgrazing Etc.,
- Wildlife Conservation (Policies and Programmes), Special Projects for Endangered Species (Project Tiger, Gir Lion Sanctuary Project and Crocodile Breeding Project).

Unit III

Principle and Practice of Wildlife Management: Management of Special Habitats; Riparian Zones, Grasslands Introduction to Conservation Biology, Conservation Values and Ethics of Conservation of Natural Resources. Conservation of Biodiversity, Patterns and Processes, Concepts of Biodiversity, Levels of Biodiversity, Genetic Diversity, Intra Specific Diversity, Species Richness, Richness of Higher Taxa, Ecosystem and Biome Diversity.

Unit IV

- International Conventions on Conservation (*Ex-Situ and in-Situ* Conservation, Conservation Breeding (E.G. Vulture, Pygmy Hog, Gharial, Etc.), Institutions and Their Role in Conservation (Zoos, Natural History Museums and Collections, Zoological Survey of India and Its Regional Centres).
- > National and International Zoological Institutes, Societies and Academic Bodies
- Brief Account of Wildlife Acts and their Amendments in India and World. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES).